Artificial intelligence to optimize the implementation of UDL in university classrooms
DOI:
https://doi.org/10.20453/spirat.v3i1.6469Keywords:
Artificial intelligence, universal design for learning, neurodiversity, educational inclusion, technological tools, educational equityAbstract
Objective: This study analyzes how artificial intelligence (AI) becomes a key tool to ensure the effective implementation of universal design for learning (UDL) in universities, optimizing accessibility, personalized learning, and educational inclusion. In addition, tools are described that provide a broader view of how AI complements and strengthens the principles of UDL, promoting more inclusive and adaptable learning environments. Analysis: UDL bases its curricular approach on three principles: multiple means of representation, various means of expression and action, and multiple ways of engagement. From its origin, it proposed integrating concepts of neuroscience applied to learning with the use of technologies, aiming to create accessible and equitable educational environments. Although its implementation has progressed in the university setting, more information and tools are still needed to ensure its effective application. In turn, AI, through adaptive learning platforms, has proven to improve the educational experience by personalizing it according to each student’s needs. This technology allows for the evaluation of individual progress and suggests adjustments that the teacher can incorporate into their pedagogical practice. Conclusion: The personalization of learning, based on process flexibility and its stages, is essential for UDL. AI, thanks to its real-time adaptability and data analysis capabilities, stands out as a strategic resource for effectively implementing UDL, ensuring a more inclusive, equitable, and tailored environment for students in higher education, thus optimizing the impact of UDL in higher education.
Downloads
References
(1) Chaudhry MA, Kazim E. Artificial Intelligence in Education (AIEd): a high-level academic and industry note. AI & Ethics. 2021; 2(2): 1-9. Disponible en: https://doi.org/10.1007/s43681-021-00074-z.
(2) Mora Masis N. Las TIC como herramienta para la implementación del DUA en la enseñanza de las artes visuales en las aulas universitarias [Internet]. Universidad Nacional; 2021 [citado 20 Abr 2025]. Disponible en: http://hdl.handle.net/11056/21846
(3) Teutli Mellado KM. Nearpod en el diseño universal del aprendizaje en educación superior. Benemérita Universidad Autónoma de Puebla; 2021 [citado 20 Abr 2025]. Disponible en: https://orcid.org/0000-0002-4515-7410
(4) Sánchez R, Duk A. Tecnologías y Diseño Universal para el Aprendizaje (DUA): experiencias en el contexto universitario e implicaciones en la formación del profesorado. 2022 [citado 20 Abr 2025]. Disponible en: https://doi.org/10.17398/1695-288X.14.1.89
(5) Rodríguez Acosta MA. Ensayo científico: la inteligencia artificial en educación superior. 2024 [citado 20 Abr 2025]. Disponible en: https://doi.org/10.54495/Rev.Cientifica.v32i2.406
(6) Knewton. Knewton Adaptive Learning and How it's Unique. 2025 [citado 20 Abr 2025]. Disponible en: https://support.knewton.com/s/article/Knewton-Adaptive-Learning-and-How-it-s-Unique
(7) Vorecol. El impacto del análisis predictivo en la retención de estudiantes dentro de un sistema de gestión de aprendizaje. 2025 [citado 20 Abr 2025]. Disponible en: https://vorecol.com/es/articulos/articulo-el-impacto-del-analisis-predictivo-en-la-retencion-de-estudiantes-dentro-de-un-sistema-de-gestion-de-aprendizaje-189967
(8) Álvarez-Borrego J, Sánchez-González L, Paredes-Valverde MA. Herramientas de Inteligencia Artificial en el Apoyo Educativo para Estudiantes con Discapacidad. Rev Univ Guayaquil. 2025;29(2):123-135. Disponible en: https://revistas.ug.edu.ec/index.php/rug/article/view/1605
(9) Sari HE, Tumanggor BE, Efron D. Improving Educational Outcomes Through Adaptive Learning Systems using AI. Int Trans Artif Intell. 2024;3(1):21-31. doi:10.33050/italic. v3i1.647.
(10) Herva ES, Tumanggor BE, Efron D. Improving Educational Outcomes Through Adaptive Learning Systems using AI. Int Trans Artif Intell. 2024;3(1):21-31. doi:10.33050/italic. v3i1.647.
(11) Akintola AS, Akintayo M, Kadri T, Oforgu CM, Michael M, Nwanna M. Adaptive AI Systems in Education: Real-Time Personalised Learning Pathways for Skill Development. In: Proceedings of ISETE International Conference; 2024 Dec 29-30; Estambul, Turquía [citado 20 Abr 2025]. Disponible en: https://www.researchgate.net/publication/388499550_Adaptive_AI_Systems_in_Education_Real-Time_Personalised_Learning_Pathways_for_Skill_Development
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jackeline Vanessa Fuentes Rentería

This work is licensed under a Creative Commons Attribution 4.0 International License.





1.png)







