Artificial intelligence in the evaluation and management of patients with epilepsy.

Authors

  • Elma Paredes-Aragón Epilepsy Program,, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University. London, Ontario, Canadá.
  • Jorge G. Burneo Epilepsy Program,, Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University. London, Ontario, Canada. Neuro-Epidemiology Unit, Schulich School of Medicine and Dentistry, Western University. London, Ontario, Canada.

DOI:

https://doi.org/10.20453/rnp.v85i2.4231

Keywords:

Epilepsy, deep learning, epilepsy surgery, artificial intelligence, refractory epilepsy, neuromodulation

Abstract

Epilepsy is a condition that frequently coexists with significant morbi-mortality levels, seriously affects the quality of life and, in up to one third of patients, is refractory to a variety of treatment approaches. Artificial intelligence (AI) has largely benefitted the study, treatment, and prognosis of patients with epilepsy through the course of recent years. These achievements applied the fields of diagnosis, automated seizure prediction, advanced seizure monitoring and electroencephalogram, use of genetics in diagnosis and management, imaging algorithms in the treatment, neuromodulation, and robotic surgery. This review conveys the actual and future directions of AI. a branch of science that has shown promising results in the treatment and diagnosis of patients with epilepsy.

References

World Health Organization. Epilepsy: a public health imperative. Ginebra: World Health Organization; 2019. (Citado el 20 de octubre del 2020). Disponible en: https://www.who.int/mental_health/neurology/epilepsy/report_2019/en/

Kwan P, Arzimanoglou A, Berg AT, Brodie MJ, Hauser WA, Mathern G, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010; 51: 1069-1077.

Kwan P, Brodie MJ. Effectiveness of first antiepileptic drug. Epilepsia. 2001;42(10):1255–60.

Chauvel P, Gonzalez-Martinez J, Bulacio J. Presurgical intracranial investigations in epilepsy surgery. In: Handbook of Clinical Neurology. 2019; 1: 45–71. Doi: 10.1016/B978-0-444-64142-7.00040-0

Boling W, Aghakhani Y, Andermann F, Sziklas V, Olivier A. Surgical treatment of independent bitemporal lobe epilepsy defined by invasive recordings. J Neurol Neurosurg Psychiatry. 2009; 80(5): 533–8 . DOI: 10.1136/jnnp.2008.155291

Massot-Tarrús A, Steven DA, McLachlan RS, Mirsattari SM, Diosy D, Parrent AG, et al. Outcome of temporal lobe epilepsy surgery evaluated with bitemporal intracranial electrode recordings. Epilepsy Res. 2016;127:324–330. DOI: 10.1016/j.eplepsyres.2016.08.008

Aghakhani Y, Liu X, Jette N, Wiebe S. Epilepsy surgery in patients with bilateral temporal lobe seizures: A systematic. Epilepsia. 55(12):1892-901. DOI: 10.1111/epi.12856/

Wiebe S, Blume WT, Girvin JP, Eliasziw M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 200;345(5):311–8. DOI: 10.1056/NEJM200108023450501

Téllez-Zenteno JF, Ronquillo LH, Moien-Afshari F, Wiebe S. Surgical outcomes in lesional and non-lesional epilepsy: A systematic review and meta-analysis. Epilepsy Res. 2010;89(2–3):310–8. DOI: 10.1016/j.eplepsyres.2010.02.007

Tomson T, Walczak T, Sillanpaa M, Sander JWAS. Sudden unexpected death in epilepsy: A review of incidence and risk factors. Epilepsia; 2005; 46: 54–61. DOI: 10.1111/j.1528-1167.2005.00411.x

Vaurio L, Karantzoulis S, Barr WB. The impact of epilepsy on quality of life. En: Chiaravalloti N, Goverover Y, editores. Changes in the Brain. New York: Springer; 2016. p. 167–87. (Citado el 20 de octubre del 2020). Disponible en: https://link.springer.com/chapter/10.1007/978-0-387-98188-8_8

Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav. 2018; 88:251-261. doi: 10.1016/j.yebeh.2018.09.030

Yu KH, Beam AL, Kohane IS. Artificial intelligence in healthcare [Internet]. Vol. 2, Nature Biomedical Engineering. 2018; 2: 719–31. (Citado el 20 de octubre del 2020). Disponible en: http://www.nature.com/articles/s41551-018-0305-z

Hamet P, Tremblay J. Artificial intelligence in medicine.. 2017;69:S36–40. DOI: 10.1016/j.metabol.2017.01.011

Miller DD, Brown EW. Artificial Intelligence in Medical Practice: The Question to the Answer?. Am J Med. 2018;131(2):129-133. doi: 10.1016/j.amjmed.2017.10.03

Moreno-Díaz R, Moreno-Díaz A. On the legacy of W.S. McCulloch. Biosystems. 2007;88(3):185-90. doi: 10.1016/j.biosystems.2006.08.010

Abraham TH. (Physio)logical circuits: The intellectual origins of the Mcculloch-Pitts neural networks. J Hist Behav Sci. Winter 2002;38(1):3-25. doi: 10.1002/jhbs.1094

Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920-30. doi: 10.1161/CIRCULATIONAHA.115.001593

El-Hassoun O, Maruscakova L, Valaskova Z, Bucova M, Polak S, Hulin I. Artificial intelligence in service of medicine. Bratisl Lek Listy. 2019;120(3):218-222. doi: 10.4149/BLL_2019_028

Abbasi B, Goldenholz DM. Machine learning applications in epilepsy. Epilepsia. 2019;60(10):2037-2047. doi: 10.1111/epi.16333

Ahmedt-Aristizabal D, Fookes C, Dionisio S, Nguyen K, Cunha JPS, Sridharan S. Automated analysis of seizure semiology and brain electrical activity in presurgery evaluation of epilepsy: A focused survey. Epilepsia. 2017;58(11):1817-1831. doi: 10.1111/epi.13907

Caudle K, Klein T, Hoffman J, Muller D, Whirl-Carrillo M, Gong L, et al. Incorporation of Pharmacogenomics into Routine Clinical Practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline Development Process. Curr Drug Metab. 2014;15(2):209-17. doi: 10.2174/1389200215666140130124910

Abul-Husn NS, Kenny EE. Leading Edge Perspective Personalized Medicine and the Power of Electronic Health Records. Cell. 2019;177:58–69. DOI:10.1016/j.cell.2019.02.039

Josephson CB, Wiebe S. Precision Medicine: Academic dreaming or clinical reality? Epilepsia. 2021;62 Suppl 2:S78-S89. doi: 10.1111/epi.16739

Weisdorf S, Zibrandtsen IC, Kjaer TW. Subcutaneous EEG Monitoring Reveals AED Response and Breakthrough Seizures. Case Rep Neurol Med. 2020; 2020: 8756917. doi: 10.1155/2020/8756917.

Byteflies. We enable wearable health. Byteflies; 2019 . (Citado el 24 de enero del 2021). Disponible en: https://na.eventscloud.com/file_uploads/403e877cecc7b00791b8f387f15f49e0_Danneels_Byteflies-eHealth.pdf

Nasseri M, Nurse E, Glasstetter M, Böttcher S, Gregg NM, Laks Nandakumar A, et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia. 2020;61 Suppl 1:S25-S35. doi: 10.1111/epi.16527

Duun‐Henriksen J, Baud M, Richardson MP, Cook M, Kouvas G, Heasman JM, et al. A new era in electroencephalographic monitoring? Subscalp devices for ultra–long‐term recordings. Epilepsia. 2020;61(9):1805-1817. doi: 10.1111/epi.16630

Tanner AEJ, Särkelä MOK, Virtanen J, Viertiö-Oja HE, Sharpe MD, Norton L, et al. Application of subhairline EEG montage in intensive care unit: Comparison with full montage. J Clin Neurophysiol. 2014;31(3):181-6. doi: 10.1097/WNP.0000000000000049

Ferrari LM, Ismailov U, Badier JM, Greco F, Ismailova E. Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography. npj Flex Electron. 2020 ;4(1). (Citado el 22 de diciembre del 2020) Disponible en: https://www.nature.com/articles/s41528-020-0067-z

Lockman J, Fisher RS, Olson DM. Detection of seizure-like movements using a wrist accelerometer. Epilepsy Behav. 2011;20(4):638-41. doi: 10.1016/j.yebeh.2011.01.019

Villar JR, Menéndez M, Sedano J, de la Cal E, González VM. Analyzing accelerometer data for epilepsy episode recognition. In: Advances in Intelligent Systems and Computing. Springer Verlag; 2015. p. 39–48.

Beniczky S, Polster T, Kjaer TW, Hjalgrim H. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study. Epilepsia. 2013;54(4):e58-61. doi: 10.1111/epi.12120

Elger CE, Hoppe C. Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. Lancet Neurol. 2018;17(3):279-288. doi: 10.1016/S1474-4422(18)30038-3

Vieluf S, Reinsberger C, Atrache R El, Jackson M, Schubach S, Ufongene C, et al. Autonomic nervous system changes detected with peripheral sensors in the setting of epileptic seizures. Sci Rep. 2020;10(1):11560. doi: 10.1038/s41598-020-68434-z

Goldenholz DM, Goldenholz SR, Romero J, Moss R, Sun H, Westover B. Development and Validation of Forecasting Next Reported Seizure Using e-Diaries. Ann Neurol. 2020;88(3):588-595. doi: 10.1002/ana.25812

Striano P, Minassian BA. From Genetic Testing to Precision Medicine in Epilepsy. Neurotherapeutics. 2020;17(2):609-615. doi: 10.1007/s13311-020-00835-4

Franco V, Perucca E. The pharmacogenomics of epilepsy. Expert Rev Neurother. 2015; 15(10):1161-70. doi: 10.1586/14737175.2015.1083424

Beniczky S, Rampp S, Asadi‐Pooya AA, Rubboli G, Perucca E, Sperling MR. Optimal choice of antiseizure medication: Agreement among experts and validation of a web‐based decision support application. Epilepsia. 2021;62(1):220-227. doi: 10.1111/epi.16763

Asadi‐Pooya AA, Beniczky S, Rubboli G, Sperling MR, Rampp S, Perucca E. A pragmatic algorithm to select appropriate antiseizure medications in patients with epilepsy. Epilepsia. 2020;61(8):1668–77. DOI: 10.1111/epi.16610

Velis D, Plouin P, Gotman J, Da Silva FL. Recommendations regarding the requirements and applications for long-term recordings in epilepsy. Epilepsia. 2007;48(2):379-84. doi: 10.1111/j.1528-1167.2007.00920.x

Emami A, Kunii N, Matsuo T, Shinozaki T, Kawai K, Takahashi H. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. Neuroimage Clin. 2019;22:101684. doi: 10.1016/j.nicl.2019.101684

Varsavsky A, Mareels I, Cook M. Epileptic Seizures and the EEG . Boca Ratón: CRC Press; 2016. (Citado el 20 de octubre del 2020). Disponible en: https://www.taylorfrancis.com/books/epileptic-seizures-eeg-andrea-varsavsky-iven-mareels-mark-cook/10.1201/b10459

González Otárula KA, Mikhaeil-Demo Y, Bachman EM, Balaguera P, Schuele S. Automated seizure detection accuracy for ambulatory EEG recordings. Neurology. 2019; 92(14):e1540-e1546. doi: 10.1212/WNL.0000000000007237

Sierra-Marcos A, Scheuer ML, Rossetti AO. Seizure detection with automated EEG analysis: a validation study focusing on periodic patterns. Clin Neurophysiol. 2015; 126(3): 456-62. doi: 10.1016/j.clinph.2014.06.025

Gotman J. Automatic seizure detection: improvements and evaluation. Electroencephalogr Clin Neurophysiol. 1990; 76(4):317-24. doi: 10.1016/0013-4694(90)90032-f.

Gotman J, Gloor P. Automatic recognition and quantification of interictal epileptic activity in the human scalp EEG. Electroencephalogr Clin Neurophysiol. 1976;41(5):513-29. doi: 10.1016/0013-4694(76)90063-8

Scheuer ML, Wilson SB, Antony A, Ghearing G, Urban A, Bagić AI. Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset. J Clin Neurophysiol. 2021;38(5):439-447. doi: 10.1097/WNP.0000000000000709

Acharya UR, Hagiwara Y, Adeli H. Automated seizure prediction. Epilepsy Behav. 2018;88:251-261. doi: 10.1016/j.yebeh.2018.09.030

Del Gaizo J, Mofrad N, Jensen JH, Clark D, Glenn R, Helpern J, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain Behav. 2017;7(10):e00801. doi: 10.1002/brb3.801

Bennett OF, Kanber B, Hoskote C, Cardoso MJ, Ourselin S, Duncan JS, et al. Learning to see the invisible: A data‐driven approach to finding the underlying patterns of abnormality in visually normal brain magnetic resonance images in patients with temporal lobe epilepsy. Epilepsia. 2019;60(12):2499-2507. doi: 10.1111/epi.16380

Kamiya K, Amemiya S, Suzuki Y, Kunii N, Kawai K, Mori H, et al. Machine Learning of DTI Structural Brain Connectomes for Lateralization of Temporal Lobe Epilepsy. Magn Reson Med Sci. 2016;15(1):121-9. doi: 10.2463/mrms.2015-0027

Gill RS, Hong SJ, Fadaie F, Caldairou B, Bernhardt BC, Barba C, et al. Deep convolutional networks for automated detection of epileptogenic brain malformations. In: Lecture Notes in Computer Science. Nerw York: Springer Verlag; 2018. p. 490–7.

Hong SJ, Kim H, Schrader D, Bernasconi N, Bernhardt BC, Bernasconi A. Automated detection of cortical dysplasia type II in MRI-negative epilepsy. Neurology. 2014;83(1):48-55. doi: 10.1212/WNL.0000000000000543

Ahmed B, Brodley CE, Blackmon KE, Kuzniecky R, Barash G, Carlson C, et al. Cortical feature analysis and machine learning improves detection of “MRI-negative” focal cortical dysplasia. Epilepsy Behav. 2015;48:21-8. doi: 10.1016/j.yebeh.2015.04.055

Coelho VCM, Morita ME, Amorim BJ, Ramos CD, Yasuda CL, Tedeschi H, et al. Automated online quantification method for 18F-FDG positron emission tomography/CT improves detection of the epileptogenic zone in patients with pharmacoresistant epilepsy. Front Neurol. 2017;8:453. doi: 10.3389/fneur.2017.00453

Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery Nat Rev Neurol. 2019;15(10):594-606. doi: 10.1038/s41582-019-0224-y

Kini LG, Bernabei JM, Mikhail F, Hadar P, Shah P, Khambhati AN, et al. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain. 2019;142(12):3892-3905. doi: 10.1093/brain/awz303

Ho AL, Muftuoglu Y, Pendharkar A V., Sussman ES, Porter BE, Halpern CH, et al. Robot-guided pediatric stereoelectroencephalography: Single-institution experience. J Neurosurg Pediatr. 2018;22(5):1-8. doi: 10.3171/2018.5.PEDS17718

De Barros A, Zaldivar-Jolissaint JF, Hoffmann D, Job-Chapron A-S, Minotti L, Kahane P, et al. Indications, Techniques, and Outcomes of Robot-Assisted Insular Stereo-Electro-Encephalography: A Review. Front Neurol. 2020;11:1033. doi: 10.3389/fneur.2020.01033

Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010; 51(5): 899-908. doi: 10.1111/j.1528-1167.2010.02536.x

Lim SN, Lee ST, Tsai YT, Chen IA, Tu PH, Chen JL, et al. Electrical stimulation of the anterior nucleus of the thalamus for intractable epilepsy: A long-term follow-up study. Epilepsia. 2007;48(2):342–7.

Chang B, Xu J. Deep brain stimulation for refractory temporal lobe epilepsy: a systematic review and meta-analysis with an emphasis on alleviation of seizure frequency outcome. Childs Nerv Syst. 2018;34(2):321-327. doi: 10.1007/s00381-017-3596-6

Kim SH, Lim SC, Kim J, Son BC, Lee KJ, Shon YM. Long-term follow-up of anterior thalamic deep brain stimulation in epilepsy: A 11-year, single center experience. Seizure. 2017;52:154-161. doi: 10.1016/j.seizure.2017.10.009

Herrera ML, Suller-Marti A, Parrent A, MacDougall K, Burneo JG. Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy: A Canadian Experience. Can J Neurol Sci. 2021;48(4):469-478. doi: 10.1017/cjn.2020.230

González HFJ, Yengo-Kahn A, Englot DJ. Vagus Nerve Stimulation for the Treatment of Epilepsy. Neurosurg Clin N Am. 2019;30(2):219-230. doi: 10.1016/j.nec.2018.12.005

Wheless JW, Gienapp AJ, Ryvlin P. Vagus nerve stimulation (VNS) therapy update. Epilepsy Behav. 2018;88S:2-10. doi: 10.1016/j.yebeh.2018.06.032

Mertens A, Raedt R, Gadeyne S, Carrette E, Boon P, Vonck K. Recent advances in devices for vagus nerve stimulation. Expert Rev Med Devices. 2018;15(8):527-539. doi: 10.1080/17434440.2018.1507732

Lo WB, Chevill B, Philip S, Agrawal S, Walsh AR. Seizure improvement following vagus nerve stimulator (VNS) battery change with cardiac-based seizure detection automatic stimulation (AutoStim): early experience in a regional paediatric unit. Childs Nerv Syst. 2021;37(4):1237-1241. doi: 10.1007/s00381-020-04962-3

Shenoy C, Alzahrani HA, Upton A, Kamath M V. Electrostimulation for refractory epilepsy: A review. J Long Term Eff Med Implants. 2016;26(3):253-260. doi: 10.1615/JLongTermEffMedImplants.2016017569

Skarpaas TL, Jarosiewicz B, Morrell MJ. Brain-responsive neurostimulation for epilepsy (RNS ® System). Epilepsy Res. 2019;153:68-70. doi: 10.1016/j.eplepsyres.2019.02.00

Chen H, Dugan P, Chong DJ, Liu A, Doyle W, Friedman D. Application of RNS in refractory epilepsy: Targeting insula. Epilepsia Open. 2017;2(3):345-349. doi: 10.1002/epi4.12061

Geller EB, Skarpaas TL, Gross RE, Goodman RR, Barkley GL, Bazil CW, et al. Brain-responsive neurostimulation in patients with medically intractable mesial temporal lobe epilepsy. Epilepsia. 2017;58(6):994-1004. doi: 10.1111/epi.13740

Nune G, DeGiorgio C, Heck C. Neuromodulation in the Treatment of Epilepsy Curr Treat Options Neurol. 2015;17(10):375. doi: 10.1007/s11940-015-0375-0

Hrabok M, Engbers JDT, Wiebe S, Sajobi TT, Subota A, Almohawes A, et al. Primary care electronic medical records can be used to predict risk and identify potentially modifiable factors for early and late death in adult onset epilepsy. Epilepsia. 2021;62(1):51-60. doi: 10.1111/epi.16738

Breitling R. What is systems biology? Front Physiol. 2010;1:9. doi: 10.3389/fphys.2010.00009

Mahoney JM, Mills JD, Muhlebner A, Noebels J, Potschka H, Simonato M, et al. WONOEP appraisal: Studying epilepsy as a network disease using systems biology approaches. Epilepsia. 2019;60(6):1045-1053. doi: 10.1111/epi.15216

Wu HC, Dachet F, Ghoddoussi F, Bagla S, Fuerst D, Stanley JA, et al. Altered metabolomic–genomic signature: A potential noninvasive biomarker of epilepsy. Epilepsia. 2017;58(9):1626-1636. doi: 10.1111/epi.13848

Jehi L, Yardi R, Chagin K, Tassi L, Russo G Lo, Worrell G, et al. Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: A retrospective analysis. Lancet Neurol. 2015; 14(3): 283-90. doi: 10.1016/S1474-4422(14)70325-4

Published

2022-06-21

How to Cite

1.
Paredes-Aragón E, Burneo JG. Artificial intelligence in the evaluation and management of patients with epilepsy. Rev Neuropsiquiatr [Internet]. 2022 Jun. 21 [cited 2024 Jul. 3];85(2):139-52. Available from: https://revistas.upch.edu.pe/index.php/RNP/article/view/4231

Issue

Section

REVIEW ARTICLE

Most read articles by the same author(s)