Consumo de biomasa y síntomas de COVID persistente en pacientes con episodio de infección moderada y severa por SARS-CoV-2
DOI:
https://doi.org/10.20453/rmh.v36i4.5783Palabras clave:
Síndrome Post Agudo de COVID-19, Biomasa, Covid-19, síntomas y signos respiratorios, disneaResumen
El consumo de biomasa produce EPOC, pero se desconoce si se asocia a Síndrome Post Agudo de COVID-19 (SPAC). Objetivo: Explorar la asociación entre el consumo de biomasa y este síndrome en pacientes recuperados de dos hospitales del norte peruano. Material y métodos: Estudio descriptivo transversal, exploratorio. Se aplicó un cuestionario de datos sociodemográficos, síntomas respiratorios y consumo de biomasa. Resultados: El tamaño final muestral fue 110. SPAC fue más frecuente entre 35-65 años (87,8%) y en Piura (89,1%), se halló en el 88,1% de los casos del 2021; la mediana desde el inicio de síntomas hasta la entrevista fue 82 (IQR = 79-119) semanas; 97/110 (86,3 %) desarrollaron SPAC; de estos, 31% habían consumido biomasa antes de la COVID-19 (p = 0,332). En los pacientes con SPAC la frecuencia de disnea, astenia y tos fue 68,4%, 67,3% y 45,3%, respectivamente. El 61,05% usaron salbutamol después del episodio agudo de COVID-19 y 14,7% oxígeno domiciliario; en el modelo final: haber tenido una traqueotomía (p = 0,011), haber estado en la UCI (p = 0,039) y la aparición del término «secuela en la epicrisis» (p = 0,052) se asociaron con SPAC; ni el consumo de biomasa (p = 0,332) ni los años de consumo (p = 0,072) se asociaron con el SPAC. Conclusión: No se encontró asociación entre el consumo previo de biomasa y el desarrollo del SPAC. La frecuencia SPAC fue alta, siendo la disnea, el síntoma más frecuente.
Descargas
Citas
COVID - Coronavirus Statistics - Worldometer [Internet]. [cited April 25, 2024]. Available in: https://www.worldometers.info/coronavirus/
MINSA. Sala de Situación Covid-19 en Piura. Semana Epidemiológica N°21-2023 [Internet]. 2023. Available in: https://covid19.minsa.gob.pe/sala_situacional.asp
OPS / OMS. Se acaba la emergencia por la pandemia, pero la COVID-19 continúa - OPS/OMS | Organización Panamericana de la Salud [Internet]. 2023 [cited April 25, 2024]. Available in: https://www.paho.org/es/noticias/6-5-2023-se-acaba-emergencia-por-pandemia-pero-covid-19-continua
National Institute for Health and Care Excellence. COVID-19 rapid guideline: managing the long-term effects of COVID-19. NICE Guideline. Dec 18, 2020; [cited April 25, 2024]. Available in: https://www.nice.org.uk/guidance/ng188
Ballering AV, van Zon SKR, Olde Hartman TC, Rosmalen JGM; Lifelines Corona Research Initiative. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet. 2022 Aug 6;400(10350):452-461. doi: 10.1016/S0140-6736(22)01214-4.
Bull-Otterson L, Baca S, Saydah S, et al. Post–COVID Conditions Among Adult COVID-19 Survivors Aged 18–64 and ≥65 Years — United States, March 2020–November 2021. MMWR Morb Mortal Wkly Rep 2022;71:713–717. doi: 10.15585/mmwr.mm7121e1
Ceban F, Ling S, Lui LMW, Lee Y, Gill H, Teopiz KM, et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav Immun. 2022 Mar;101:93-135. doi: 10.1016/j.bbi.2021.12.020..
Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021 Jan 16;397(10270):220-232. doi: 10.1016/S0140-6736(20)32656-8.
Jain V, Yuan JM. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: a systematic review and meta-analysis. Int J Public Health. 2020 Jun;65(5):533-46. doi: 10.1007/s00038-020-01390-7.
Po JYT, FitzGerald JM, Carlsten C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: systematic review and meta-analysis. Thorax. 2011 Mar;66(3):232-9. doi: 10.1136/thx.2010.147884.
Kurmi OP, Semple S, Simkhada P, Smith WCS, Ayres JG. COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax. marzo de 2010;65(3):221-8. doi: 10.1136/thx.2009.124644.
Biomass - MeSH - NCBI [Internet]. [cited Oct 3, 2025]. Disponible en: https://www.ncbi.nlm.nih.gov/mesh/?term=biomass
Torres-Duque C, Maldonado D, Pérez-Padilla R, Ezzati M, Viegi G, Forum of International Respiratory Studies (FIRS) Task Force on Health Effects of Biomass Exposure. Biomass fuels and respiratory diseases: a review of the evidence. Proc Am Thorac Soc. 2008 Jul 15;5(5):577-90. doi: 10.1513/pats.200707-100RP.
Sällsten G, Gustafson P, Johansson L, Johannesson S, Molnár P, Strandberg B, et al. Experimental wood smoke exposure in humans. Inhal Toxicol. 2006 Oct;18(11):855-64. doi: 10.1080/08958370600822391.
Banerjee A, Mondal NK, Das D, Ray MR. Neutrophilic inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning. Inflammation. 2012 Apr;35(2):671-83. doi: 10.1007/s10753-011-9360-2.
World Health Organization. Fuel for life: household energy and health [Internet]. 2 Jan 2006. [cited 2025 Oct 1, 2025]. Available in: https://www.who.int/publications/i/item/9789241563161
INEI. Hogares en los que cocinan con combustibles contaminantes. [Internet]. 2019. Available in: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1664/libro.pdf
Montaño M, Beccerril C, Ruiz V, Ramos C, Sansores RH, González-Avila G. Matrix metalloproteinases activity in COPD associated with wood smoke. Chest. 2004 Feb;125(2):466-72. doi: 10.1378/chest.125.2.466.
Nieman GF, Clark WR, Wax SD, Webb SR. The effect of smoke inhalation on pulmonary surfactant. Ann Surg. 1980 Feb;191(2):171-81. doi: 10.1097/00000658-198002000-00008.
Zelikoff JT, Chen LC, Cohen MD, Schlesinger RB. The toxicology of inhaled woodsmoke. J Toxicol Environ Health B Crit Rev. 2002;5(3):269-82. doi: 10.1080/10937400290070062.
Caballero A, Torres-Duque CA, Jaramillo C, Bolívar F, Sanabria F, Osorio P, et al. Prevalence of COPD in five Colombian cities situated at low, medium, and high altitude (PREPOCOL study). Chest. 2008 Feb;133(2):343-9. doi: 10.1378/chest.07-1361.
Thakur M, Boudewijns EA, Babu GR, van Schayck OCP. Biomass use and COVID-19: A novel concern. Environ Res. 2020 Jul;186:109586. doi: 10.1016/j.envres.2020.109586.
Cui Y, Zhang ZF, Froines J, Zhao J, Wang H, Yu SZ, et al. Air pollution and case fatality of SARS in the People’s Republic of China: an ecologic study. Environ Health. 2003 Nov 20;2(1):15. doi: 10.1186/1476-069X-2-15.
Ciencewicki J, Jaspers I. Air Pollution and Respiratory Viral Infection. Inhal Toxicol. 2007 Nov;19(14):1135-46. doi: 10.1080/08958370701665434.
Wu X, Nethery RC, Sabath BM, Braun D, Dominici F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv [Preprint]. 2020 Apr 7:2020.04.05.20054502. doi: 10.1101/2020.04.05.20054502.
León-Jiménez F, Vives-Kufoy C, Failoc-Rojas VE, Valladares-Garrido MJ, León-Jiménez F, Vives-Kufoy C, et al. Mortalidad en pacientes hospitalizados por COVID-19. Estudio prospectivo en el norte del Perú, 2020. Rev Méd Chile. 2021 Oct;149(10):1459-66. doi: 10.4067/s0034-98872021001001459
Matsuyama E, Miyata J, Terai H, Miyazaki N, Iwasaki T, Nagashima K, et.al. Chronic obstructive pulmonary disease, asthma, and mechanical ventilation are risk factors for dyspnea in patients with long COVID: A Japanese nationwide cohort study. Respir Investig. 2024 Nov;62(6):1094-1101. doi: 10.1016/j.resinv.2024.09.009.
Ortiz-Quintero B, Martínez-Espinosa I, Pérez-Padilla R. Mechanisms of Lung Damage and Development of COPD Due to Household Biomass-Smoke Exposure: Inflammation, Oxidative Stress, MicroRNAs, and Gene Polymorphisms. Cells. 2023 Jan;12(1):67. doi: 10.3390/cells12010067.
Honardoost M, Janani L, Aghili R, Emami Z, Khamseh ME. The Association between Presence of Comorbidities and COVID-19 Severity: A Systematic Review and Meta-Analysis. Cerebrovasc Dis. 2021;50(2):132-140. doi: 10.1159/000513288.
Subramanian A, Nirantharakumar K, Hughes S, Myles P, Williams T, Gokhale KM, et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med. 2022 Aug;28(8):1706-14. doi: 10.1038/s41591-022-01909-w.
Díaz de León-Martínez L, de la Sierra-de la Vega L, Palacios-Ramírez A, Rodriguez-Aguilar M, Flores-Ramírez R. Critical review of social, environmental and health risk factors in the Mexican indigenous population and their capacity to respond to the COVID-19. Sci Total Environ. 2020 Sep 1;733:139357.doi: 10.1016/j.scitotenv.2020.139357.
Laurent R, Correia P, Lachand R, Diconne E, Ezingeard E, Bruna F, Guenier PA, Page D, Périnel-Ragey S, Thiéry G. Long-term outcomes of COVID-19 intensive care unit survivors and their family members: a one year follow-up prospective study. Front Public Health. 2023 Aug 8;11:1236990. doi: 10.3389/fpubh.2023.1236990.
Malik P, Patel K, Pinto C, Jaiswal R, Tirupathi R, Pillai S, Patel U. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-A systematic review and meta-analysis. J Med Virol. 2022 Jan;94(1):253-262. doi: 10.1002/jmv.27309.
Davis HE, Assaf GS, McCorkell L, Wei H, Low RJ, Re’em Y, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021 Aug;38:101019. doi: 10.1016/j.eclinm.2021.101019.
Taquet M, Dercon Q, Luciano S, Geddes JR, Husain M, Harrison PJ. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021 Sep;18(9):e1003773. doi: 10.1371/journal.pmed.1003773.
Notarte KI, de Oliveira MHS, Peligro PJ, Velasco JV, Macaranas I, Ver AT, et al. Age, Sex and Previous Comorbidities as Risk Factors Not Associated with SARS-CoV-2 Infection for Long COVID-19: A Systematic Review and Meta-Analysis. J Clin Med. 2022 Dec 9;11(24):7314. doi: 10.3390/jcm11247314.
Danesh V, Arroliga AC, Bourgeois JA, Boehm LM, McNeal MJ, Widmer AJ, et al. Symptom Clusters Seen in Adult COVID-19 Recovery Clinic Care Seekers. J Gen Intern Med. 2023 Feb;38(2):442-9. doi:10.1007/s11606-022-07908-4.
Thaweethai T, Jolley SE, Karlson EW, Levitan EB, Levy B, McComsey GA, et al. Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection. JAMA. 2023 Jun 13;329(22):1934-46. doi:10.1001/jama.2023.8823.
Ponce de León Z. Sistema de Salud en el Perú y el COVID-19. Documento de política pública [Internet]. PUCP; 2021. Disponible en: https://gobierno.pucp.edu.pe/wp-content/uploads/2021/12/la-salud-en-tiempos-de-covid-vf.pdf
Yang J, Markus K, Andersen KM, Rudolph AE, McGrath LJ, Nguyen JL, et al. Definition and measurement of post-COVID-19 conditions in real-world practice: a global systematic literature review. BMJ Open. 2024 Jan 17;14(1):e077886. doi: 10.1136/bmjopen-2023-077886.
Sana A, Somda SMA, Meda N, Bouland C. Chronic obstructive pulmonary disease associated with biomass fuel use in women: a systematic review and meta-analysis. BMJ Open Respir Res. 2018 Jan 12;5(1):e000246. doi: 10.1136/bmjresp-2017-000246.
Bachelet VC, Carroza B, Morgado B, Silva-Ayarza I. A systematic analysis of the literature on the post-COVID-19 condition in Latin America focusing on epidemiology, clinical characteristics, and risk of bias. Medwave. 2025 Jan 16;25(1):e3014. English. doi: 10.5867/medwave.2025.01.3014.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Los autores

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los autores ceden sus derechos a la RMH para que esta divulgue el artículo a través de los medios que disponga. Los autores mantienen el derecho a compartir, copiar, distribuir, ejecutar y comunicar públicamente su artículo, o parte de él, mencionando la publicación original en la revista.












