A surdeferentação dentária como fator etiológico das disfunções gustativas em ratos Wistar machos

Autores

  • Alejandro Gutiérrez Patiño Paúl

DOI:

https://doi.org/10.20453/reh.v34i1.5314

Palavras-chave:

extração dentária, percepção gustativa, cânula, ratos Wistar

Resumo

Objetivo: Avaliar a influência da surdeferentação dentária (DD) no sentido do paladar de ratos Wistar machos através do teste de reatividade gustativa (TRG). Materiais e métodos: Estudo experimental, seguindo as diretrizes ARRIVE 2.0, realizado em dez ratos Wistar. Estes foram aleatorizados e atribuídos a um grupo de controlo ou a um grupo experimental, tendo sido implantadas cânulas para TRG em ambos os grupos. No grupo experimental, foi efetuada a exodontia dos três molares superiores do lado direito. No segundo ou terceiro dia, iniciou-se a TRG (dia 1) com a infusão de 1 M de uma substância doce (ingestiva) e 3 mM de uma substância amarga (aversiva), na velocidade de 1 mL em 1 minuto. Esse TRG foi repetido nos dias 7, 14 e 21. As respostas ingestivas e aversivas foram avaliadas durante 1 minuto. Os dados foram processados no pacote estatístico SPSS v. 26. O teste U de Mann-Withney foi usado para identificar diferenças; e a magnitude da diferença foi calculada usando o r de Rosenthal. Resultados: As respostas ingestivas à sacarose foram obtidas no dia 1 (p > 0,05); foram obtidas respostas diferentes no dia 7 (p = 0,05), no dia 14 (p = 0,009) e no dia 21 (p = 0,009). Também se obtiveram respostas aversivas ao benzoato de denatónio (BD) nos dias 1, 7 e 21 (p > 0,05); estas foram diferentes no dia 14 (p = 0,05). Conclusões: Foi encontrada uma diferença nas respostas ingestivas medianas à sacarose e nas respostas aversivas ao BD em ratos Wistar machos como resultado da DD.

Referências

Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, et al. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg [Internet]. 1991; 117(5): 519-528. Disponible en: https://doi.org/10.1001/archotol.1991.01870170065015

Ribeiro G, Torres S, Fernandes AB, Camacho M, Branco TL, Martins SS, et al. Enhanced sweet taste perception in obesity: joint analysis of gustatory data from multiple studies. Front Nutr [Internet]. 2022; 9: 1028261. Disponible en: https://doi.org/10.3389/fnut.2022.1028261

Loper HB, La Sala M, Dotson C, Steinle N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev [Internet]. 2015; 73(2): 83-91. Disponible en: https://doi.org/10.1093/nutrit/nuu009

Murtaza B, Hichami A, Khan AS, Ghiringhelli F, Khan N. Alteration in taste perception in cancer: causes and strategies of treatment. Front Physiol [Internet]. 2017; 8: 134. Disponible en: https://doi.org/10.3389/fphys.2017.00134

Jipu R, Șerban IL, Hurjui LL, Ion H, Tărniceriu CC, Statescu C, et al. Taste sensitivity variations in different systemic diseases. Rom J Oral Rehabil [Internet]. 2020; 12(2): 212-219. Disponible en: https://rjor.ro/taste-sensitivity-variations-in-different-systemic-diseases/

Medeiros A, Studart E, De Barros P, Silva PG, De Lima BB, Carvalho FSR, et al. Clinical investigation of gustatory and neurosensory alterations following mandibular third molar surgery: an observational prospective study. Clin Oral Investig [Internet]. 2019; 23(7): 2941-2949. Disponible en: https://doi.org/10.1007/s00784-018-02798-5

Anand R, Prabhu D, Manodh P, Devadoss P, Aparna M, Sundaram R. Short-term evaluation of gustatory changes after surgical removal of mandibular third molar - A prospective randomized control trial. J Oral Maxillofac Surg [Internet]. 2018; 76(2): 258-266. Disponible en: https://doi.org/10.1016/j.joms.2017.06.028

Hotta M, Endo S, Tomita H. Taste disturbance in two patients after dental anesthesia by inferior alveolar nerve block. Acta Otolaryngol [Internet]. 2002; 122(4): 94-98. Disponible en: https://doi.org/10.1080/00016480260046463

Ahn YJ, Kim SW, Kim ME, Kim KS. Effect of inferior alveolar nerve block anesthesia on taste threshold. J Oral Med Pain [Internet]. 2007; 32(2): 177-185. Disponible en: https://koreascience.kr/article/JAKO200715536393950.page

Boucher Y, Berteretche M-V, Farhang F, Arvy M-P, Azérad J, Faurion A. Taste deficits related to dental deafferentation: an electrogustometric study in humans. Eur J Oral Sci [Internet]. 2006; 114: 456-464. Disponible en: https://doi.org/10.1111/j.1600-0722.2006.00401.x

Jou YT. Dental deafferentation and brain damage: a review and a hypothesis. Kaohsiung J Med Sci [Internet]. 2018; 34(4): 231-237. Disponible en: https://doi.org/10.1016/j.kjms.2018.01.013

Mostafa S, Hakam H, El-Motayam A. Gustatory dysfunction in relation to circumvallate papilla's taste buds structure upon unilateral maxillary molar extraction in Wistar rats: an in vivo study. F1000Research [Internet]. 2019; 8: 1667. Disponible en: https://doi.org/10.12688/f1000research.19684.1

Stanbouly D, Zeng Q, Jou YT, Chuang SK. Edentulism (missing teeth) and brain central nervous system (CNS) deafferentation: a narrative review. Front Oral Maxillofac Med [Internet]. 2024; 6: 8. Disponible en: https://dx.doi.org/10.21037/fomm-21-117

Berridge K. ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiol Behav [Internet]. 2009; 97(5): 537-550. Disponible en: https://doi.org/10.1016%2Fj.physbeh.2009.02.044

Schier LA, Spector AC. The functional and neurobiological properties of bad taste. Physiol Rev [Internet]. 2019; 99(1): 605-663. Disponible en: https://doi.org/10.1152%2Fphysrev.00044.2017

Hintiryan H, Hayes UL, Chambers KC. Intraoral cheek fistulae: a refined technique. Lab Anim [Internet]. 2006; 40(4): 456-464. Disponible en: https://doi.org/10.1258/002367706778476479

Berridge K, Grill HJ, Norgren R. Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions. J Comp Physiol Psychol [Internet]. 1981; 95(3): 363-382. Disponible en: https://doi.org/10.1037/h0077782

Grill HJ, Schwartz GJ, Travers JB. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. I. Effects of chorda tympani or glossopharyngeal nerve section in the rat. Brain Res [Internet]. 1992; 573(1): 95-104. Disponible en: https://doi.org/10.1016/0006-8993(92)90117-R

Parker LA. Conditioned suppression of drinking: A measure of the CR elicited by a lithium-conditioned flavor. Learn Motiv [Internet]. 1980; 11(4): 538-559. Disponible en: https://doi.org/10.1016/0023-9690(80)90032-6

Parker LA. Rewarding drugs produce taste avoidance, but not taste aversion. Neurosci Biobehav Rev [Internet]. 1995; 19(1): 143-157. Disponible en: https://doi.org/10.1016/0149-7634(94)00028-y

Spector AC, Breslin P, Grill HJ. Taste reactivity as a dependent measure of the rapid formation of conditioned taste aversion: a tool for the neural analysis of taste-visceral associations. Behav Neurosci [Internet]. 1988; 102(6): 942-952. Disponible en: https://doi.org/10.1037//0735-7044.102.6.942

Zecchin KG, Da Silva Jorge R, Jorge J. A new method for extraction of mandibular first molars in rats. Braz J Oral Sci [Internet]. 2007; 6(21): 1344-1348. Disponible en: https://tspace.library.utoronto.ca/bitstream/1807/57998/1/os07018.pdf

Luo B, Pang Q, Jiang Q. Tooth loss causes spatial cognitive impairment in rats through decreased cerebral blood flow and increased glutamate. Arch Oral Biol [Internet]. 2019; 102: 225-230. Disponible en: https://doi.org/10.1016/j.archoralbio.2019.05.004

Yoneda N, Noiri Y, Matsui S, Kuremoto K, Maezono H, Ishimoto T, et al. Development of a root canal treatment model in the rat. Sci Rep [Internet]. 2017; 7(1): 3315. Disponible en: https://doi.org/10.1038/s41598-017-03628-6

Aguirre-Siancas EE, Lam-Figueroa NM. Efecto de la masticación sobre la memoria y aprendizaje espacial en ratones adultos y seniles. Rev Chil Neuro-Psiquiat [Internet]. 2019; 57(2): 149-157. Disponible en: http://dx.doi.org/10.4067/S0717-92272019000200149

Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, et al. Reduced mastication impairs memory function. J Dent Res [Internet]. 2017; 96: 1058-1066. Disponible en: https://doi.org/10.1177/0022034517708771

Xiong H, Hägg U, Tang GH, Rabie ABM, Robinson W. The effect of continuous bite‑jumping in adult rats: a morphological study. Angle Orthod [Internet]. 2004; 74: 86‑92. Disponible en: https://doi.org/10.1043/0003-3219(2004)074%3C0086:teocbi%3E2.0.co;2

Beauboeuf R, Watari I, Saito E, Jui‑Chin H, Kubono‑Mizumachi M, Ono T. Alterations in the gustatory papillae after anterior bite plate insertion in growing rats. J Orthodont Sci [Internet]. 2019; 8(1): 4. Disponible en: https://doi.org/10.4103%2Fjos.JOS_68_18

Boucher Y, Simons C, Faurion A, Azérad J, Carstens E. Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res [Internet]. 2003; 973: 265-274. Disponible en: https://doi.org/10.1016/s0006-8993(03)02526-5

Felizardo R, Boucher Y, Braud A, Carstens E, Dauvergne C, Zerari-Mailly F. Trigeminal projections on gustatory neurons of the nucleus of the solitary tract: a double-label strategy using electrical stimulation of the chorda tympani and tracer injection in the lingual nerve. Brain Res [Internet]. 2009; 1288: 60-68. Disponible en: https://doi.org/10.1016/j.brainres.2009.07.002

Faurion A. Sensory interactions through neural pathways. Physiol Behav [Internet]. 2006; 89: 44-46. Disponible en: https://doi.org/10.1016/j.physbeh.2006.05.008

Lin JY, Arthurs J, Reilly S. Conditioned taste aversion, drugs of abuse and palatability. Neurosci Biobehav Rev [Internet]. 2014; 45: 28-45. Disponible en: https://doi.org/10.1016%2Fj.neubiorev.2014.05.001

Bishnoi IR, Cloutier CJ, Tyson CD, Matic VM, Kavaliers M, Ossenkopp KP. Infection, learning, and memory: Focus on immune activation and aversive conditioning. Neurosci Biobehav Rev [Internet]. 2022; 142: 104898. Disponible en: https://doi.org/10.1016/j.neubiorev.2022.104898

Grill HJ, Norgren R. The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res [Internet]. 1978; 143(2): 281-297. Disponible en: https://doi.org/10.1016/0006-8993(78)90569-3

King CT, Garcea M, Stolzenberg DS, Spector AC. Experimentally cross-wired lingual taste nerves can restore normal unconditioned gaping behavior in response to quinine stimulation. Am J Physiol Regul Integr Comp Physiol [Internet]. 2008; 294(3): 738-747. Disponible en: https://doi.org/10.1152/ajpregu.00668.2007

Grill HJ, Schwartz GJ. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. II. Effects of combined chorda tympani or glossopharyngeal nerve section in the rat. Brain Res [Internet]. 1992; 573(1): 105-113. Disponible en: https://doi.org/10.1016/0006-8993(92)90118-s

King CT, Garcea M, Spector A. Glossopharyngeal nerve regeneration is essential for the complete recovery of quinine-stimulated oromotor rejection behaviors and central patterns of neuronal activity in the nucleus of the solitary tract in the rat. J Neurosci [Internet]. 2000; 20(22): 8426-8434. Disponible en: https://doi.org/10.1523%2FJNEUROSCI.20-22-08426.2000

Publicado

2024-03-31

Como Citar

1.
Patiño Paúl AG. A surdeferentação dentária como fator etiológico das disfunções gustativas em ratos Wistar machos. Rev Estomatol Herediana [Internet]. 31º de março de 2024 [citado 16º de maio de 2024];34(1):17-26. Disponível em: https://revistas.upch.edu.pe/index.php/REH/article/view/5314

Edição

Seção

ARTIGO ORIGINAL