Dental deafferentation as an etiologic factor of taste dysfunction in male Wistar rats

Authors

  • Alejandro Gutiérrez Patiño Paúl

DOI:

https://doi.org/10.20453/reh.v34i1.5314

Keywords:

tooth extraction, taste perception, cannula, Wistar rats

Abstract

Objective: To evaluate the influence of dental deafferentation (DD) on the sense of taste in male Wistar rats using the taste reactivity test (TRG). Materials and methods: An experimental study was conducted on ten Wistar rats, following ARRIVE 2.0 guidelines. They were randomized and assigned to a control or experimental group, and both groups' cannulae for the TRG were implanted. In the experimental group, exodontia of the three upper molars on the right side was performed. On the second or third day, GRT was started (day 1) by infusing 1 M of a sweet substance (ingestive) and 3 mM of a bitter substance (aversive) at a rate of 1 mL in 1 minute. This TRG was repeated on days 7, 14, and 21. Ingestive and aversive responses were scored for 1 minute. The data were processed in the SPSS v. 26 statistical package. The Mann-Whitney U test was used to identify differences, and the magnitude of the difference was calculated using Rosenthal's r. Results: Ingestive responses to sucrose were obtained on day 1 (p > 0.05); different responses were obtained on the other days: day 7 (p = 0.05), day 14 (p = 0.009), and day 21 (p = 0.009). Likewise, aversive responses to denatonium benzoate (BD) were obtained on days 1, 7, and 21 (p > 0.05); this was different on day 14 (p = 0.05). Conclusions: We found a difference in median ingestive responses to sucrose and aversive responses to BD in male Wistar rats due to DD.

References

Deems DA, Doty RL, Settle RG, Moore-Gillon V, Shaman P, Mester AF, et al. Smell and taste disorders, a study of 750 patients from the University of Pennsylvania Smell and Taste Center. Arch Otolaryngol Head Neck Surg [Internet]. 1991; 117(5): 519-528. Disponible en: https://doi.org/10.1001/archotol.1991.01870170065015

Ribeiro G, Torres S, Fernandes AB, Camacho M, Branco TL, Martins SS, et al. Enhanced sweet taste perception in obesity: joint analysis of gustatory data from multiple studies. Front Nutr [Internet]. 2022; 9: 1028261. Disponible en: https://doi.org/10.3389/fnut.2022.1028261

Loper HB, La Sala M, Dotson C, Steinle N. Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev [Internet]. 2015; 73(2): 83-91. Disponible en: https://doi.org/10.1093/nutrit/nuu009

Murtaza B, Hichami A, Khan AS, Ghiringhelli F, Khan N. Alteration in taste perception in cancer: causes and strategies of treatment. Front Physiol [Internet]. 2017; 8: 134. Disponible en: https://doi.org/10.3389/fphys.2017.00134

Jipu R, Șerban IL, Hurjui LL, Ion H, Tărniceriu CC, Statescu C, et al. Taste sensitivity variations in different systemic diseases. Rom J Oral Rehabil [Internet]. 2020; 12(2): 212-219. Disponible en: https://rjor.ro/taste-sensitivity-variations-in-different-systemic-diseases/

Medeiros A, Studart E, De Barros P, Silva PG, De Lima BB, Carvalho FSR, et al. Clinical investigation of gustatory and neurosensory alterations following mandibular third molar surgery: an observational prospective study. Clin Oral Investig [Internet]. 2019; 23(7): 2941-2949. Disponible en: https://doi.org/10.1007/s00784-018-02798-5

Anand R, Prabhu D, Manodh P, Devadoss P, Aparna M, Sundaram R. Short-term evaluation of gustatory changes after surgical removal of mandibular third molar - A prospective randomized control trial. J Oral Maxillofac Surg [Internet]. 2018; 76(2): 258-266. Disponible en: https://doi.org/10.1016/j.joms.2017.06.028

Hotta M, Endo S, Tomita H. Taste disturbance in two patients after dental anesthesia by inferior alveolar nerve block. Acta Otolaryngol [Internet]. 2002; 122(4): 94-98. Disponible en: https://doi.org/10.1080/00016480260046463

Ahn YJ, Kim SW, Kim ME, Kim KS. Effect of inferior alveolar nerve block anesthesia on taste threshold. J Oral Med Pain [Internet]. 2007; 32(2): 177-185. Disponible en: https://koreascience.kr/article/JAKO200715536393950.page

Boucher Y, Berteretche M-V, Farhang F, Arvy M-P, Azérad J, Faurion A. Taste deficits related to dental deafferentation: an electrogustometric study in humans. Eur J Oral Sci [Internet]. 2006; 114: 456-464. Disponible en: https://doi.org/10.1111/j.1600-0722.2006.00401.x

Jou YT. Dental deafferentation and brain damage: a review and a hypothesis. Kaohsiung J Med Sci [Internet]. 2018; 34(4): 231-237. Disponible en: https://doi.org/10.1016/j.kjms.2018.01.013

Mostafa S, Hakam H, El-Motayam A. Gustatory dysfunction in relation to circumvallate papilla's taste buds structure upon unilateral maxillary molar extraction in Wistar rats: an in vivo study. F1000Research [Internet]. 2019; 8: 1667. Disponible en: https://doi.org/10.12688/f1000research.19684.1

Stanbouly D, Zeng Q, Jou YT, Chuang SK. Edentulism (missing teeth) and brain central nervous system (CNS) deafferentation: a narrative review. Front Oral Maxillofac Med [Internet]. 2024; 6: 8. Disponible en: https://dx.doi.org/10.21037/fomm-21-117

Berridge K. ‘Liking’ and ‘wanting’ food rewards: Brain substrates and roles in eating disorders. Physiol Behav [Internet]. 2009; 97(5): 537-550. Disponible en: https://doi.org/10.1016%2Fj.physbeh.2009.02.044

Schier LA, Spector AC. The functional and neurobiological properties of bad taste. Physiol Rev [Internet]. 2019; 99(1): 605-663. Disponible en: https://doi.org/10.1152%2Fphysrev.00044.2017

Hintiryan H, Hayes UL, Chambers KC. Intraoral cheek fistulae: a refined technique. Lab Anim [Internet]. 2006; 40(4): 456-464. Disponible en: https://doi.org/10.1258/002367706778476479

Berridge K, Grill HJ, Norgren R. Relation of consummatory responses and preabsorptive insulin release to palatability and learned taste aversions. J Comp Physiol Psychol [Internet]. 1981; 95(3): 363-382. Disponible en: https://doi.org/10.1037/h0077782

Grill HJ, Schwartz GJ, Travers JB. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. I. Effects of chorda tympani or glossopharyngeal nerve section in the rat. Brain Res [Internet]. 1992; 573(1): 95-104. Disponible en: https://doi.org/10.1016/0006-8993(92)90117-R

Parker LA. Conditioned suppression of drinking: A measure of the CR elicited by a lithium-conditioned flavor. Learn Motiv [Internet]. 1980; 11(4): 538-559. Disponible en: https://doi.org/10.1016/0023-9690(80)90032-6

Parker LA. Rewarding drugs produce taste avoidance, but not taste aversion. Neurosci Biobehav Rev [Internet]. 1995; 19(1): 143-157. Disponible en: https://doi.org/10.1016/0149-7634(94)00028-y

Spector AC, Breslin P, Grill HJ. Taste reactivity as a dependent measure of the rapid formation of conditioned taste aversion: a tool for the neural analysis of taste-visceral associations. Behav Neurosci [Internet]. 1988; 102(6): 942-952. Disponible en: https://doi.org/10.1037//0735-7044.102.6.942

Zecchin KG, Da Silva Jorge R, Jorge J. A new method for extraction of mandibular first molars in rats. Braz J Oral Sci [Internet]. 2007; 6(21): 1344-1348. Disponible en: https://tspace.library.utoronto.ca/bitstream/1807/57998/1/os07018.pdf

Luo B, Pang Q, Jiang Q. Tooth loss causes spatial cognitive impairment in rats through decreased cerebral blood flow and increased glutamate. Arch Oral Biol [Internet]. 2019; 102: 225-230. Disponible en: https://doi.org/10.1016/j.archoralbio.2019.05.004

Yoneda N, Noiri Y, Matsui S, Kuremoto K, Maezono H, Ishimoto T, et al. Development of a root canal treatment model in the rat. Sci Rep [Internet]. 2017; 7(1): 3315. Disponible en: https://doi.org/10.1038/s41598-017-03628-6

Aguirre-Siancas EE, Lam-Figueroa NM. Efecto de la masticación sobre la memoria y aprendizaje espacial en ratones adultos y seniles. Rev Chil Neuro-Psiquiat [Internet]. 2019; 57(2): 149-157. Disponible en: http://dx.doi.org/10.4067/S0717-92272019000200149

Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, et al. Reduced mastication impairs memory function. J Dent Res [Internet]. 2017; 96: 1058-1066. Disponible en: https://doi.org/10.1177/0022034517708771

Xiong H, Hägg U, Tang GH, Rabie ABM, Robinson W. The effect of continuous bite‑jumping in adult rats: a morphological study. Angle Orthod [Internet]. 2004; 74: 86‑92. Disponible en: https://doi.org/10.1043/0003-3219(2004)074%3C0086:teocbi%3E2.0.co;2

Beauboeuf R, Watari I, Saito E, Jui‑Chin H, Kubono‑Mizumachi M, Ono T. Alterations in the gustatory papillae after anterior bite plate insertion in growing rats. J Orthodont Sci [Internet]. 2019; 8(1): 4. Disponible en: https://doi.org/10.4103%2Fjos.JOS_68_18

Boucher Y, Simons C, Faurion A, Azérad J, Carstens E. Trigeminal modulation of gustatory neurons in the nucleus of the solitary tract. Brain Res [Internet]. 2003; 973: 265-274. Disponible en: https://doi.org/10.1016/s0006-8993(03)02526-5

Felizardo R, Boucher Y, Braud A, Carstens E, Dauvergne C, Zerari-Mailly F. Trigeminal projections on gustatory neurons of the nucleus of the solitary tract: a double-label strategy using electrical stimulation of the chorda tympani and tracer injection in the lingual nerve. Brain Res [Internet]. 2009; 1288: 60-68. Disponible en: https://doi.org/10.1016/j.brainres.2009.07.002

Faurion A. Sensory interactions through neural pathways. Physiol Behav [Internet]. 2006; 89: 44-46. Disponible en: https://doi.org/10.1016/j.physbeh.2006.05.008

Lin JY, Arthurs J, Reilly S. Conditioned taste aversion, drugs of abuse and palatability. Neurosci Biobehav Rev [Internet]. 2014; 45: 28-45. Disponible en: https://doi.org/10.1016%2Fj.neubiorev.2014.05.001

Bishnoi IR, Cloutier CJ, Tyson CD, Matic VM, Kavaliers M, Ossenkopp KP. Infection, learning, and memory: Focus on immune activation and aversive conditioning. Neurosci Biobehav Rev [Internet]. 2022; 142: 104898. Disponible en: https://doi.org/10.1016/j.neubiorev.2022.104898

Grill HJ, Norgren R. The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res [Internet]. 1978; 143(2): 281-297. Disponible en: https://doi.org/10.1016/0006-8993(78)90569-3

King CT, Garcea M, Stolzenberg DS, Spector AC. Experimentally cross-wired lingual taste nerves can restore normal unconditioned gaping behavior in response to quinine stimulation. Am J Physiol Regul Integr Comp Physiol [Internet]. 2008; 294(3): 738-747. Disponible en: https://doi.org/10.1152/ajpregu.00668.2007

Grill HJ, Schwartz GJ. The contribution of gustatory nerve input to oral motor behavior and intake-based preference. II. Effects of combined chorda tympani or glossopharyngeal nerve section in the rat. Brain Res [Internet]. 1992; 573(1): 105-113. Disponible en: https://doi.org/10.1016/0006-8993(92)90118-s

King CT, Garcea M, Spector A. Glossopharyngeal nerve regeneration is essential for the complete recovery of quinine-stimulated oromotor rejection behaviors and central patterns of neuronal activity in the nucleus of the solitary tract in the rat. J Neurosci [Internet]. 2000; 20(22): 8426-8434. Disponible en: https://doi.org/10.1523%2FJNEUROSCI.20-22-08426.2000

Published

2024-03-31

How to Cite

1.
Patiño Paúl AG. Dental deafferentation as an etiologic factor of taste dysfunction in male Wistar rats. Rev Estomatol Herediana [Internet]. 2024 Mar. 31 [cited 2024 May 16];34(1):17-26. Available from: https://revistas.upch.edu.pe/index.php/REH/article/view/5314

Issue

Section

ARTICLE