Efectos tóxicos del aluminio: una intoxicación silenciosa

Autores/as

  • Sandra Yucra Sevillano Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú. Universidad Católica de Santa María, Escuela de Postgrado. Arequipa, Perú. https://orcid.org/0000-0002-7936-7467
  • Julio Alberto Fuenzalida Valdivia Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú. https://orcid.org/0000-0002-9905-664X
  • Miguel Fernando Farfán Delgado, Dr Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú. Asociación Peruana de Facultades de Medicina (ASPEFAM). Lima, Perú.
  • Karlo Aurelio Terreros Abril Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú. https://orcid.org/0000-0003-3354-2087

DOI:

https://doi.org/10.20453/rnp.v87i2.5224

Palabras clave:

aluminio, metabolismo, neurotoxicidad, enfermedad de Alzheimer, exposición ocupacional

Resumen

Objetivo: Describir, de acuerdo con normas establecidas por la literatura médica, las fuentes de ingesta de aluminio (Al3+), su proceso metabólico, sus efectos tóxicos y su relación con algunas enfermedades neurológicas. Materiales y métodos: Se efectuó una búsqueda no sistemática de literatura pertinente en PubMed, Elsevier, SciELO, Springer Link, Web of Science y Google Scholar. Resultados: Dentro de las fuentes de ingesta de aluminio se encontraron alimentos cocinados con papel aluminio, medicamentos o arcillas llamadas «chacco», de uso tradicional en la zona sur del Perú. Se estima que una persona promedio ingiere 3-5 mg de aluminio por día. Aproximadamente, el 40 % se retiene en el revestimiento intestinal o es secretado por los enterocitos hacia el sistema circulatorio, lo que eleva los niveles y permite que el Al3+ ingrese a diferentes órganos, como los huesos o el cerebro. Los efectos tóxicos ocurren como resultado de la interferencia con diferentes mecanismos biológicos y enzimáticos. Dentro de las enfermedades vinculadas a este proceso se citan Alzheimer, esclerosis lateral amiotrófica, enfermedad renal crónica, entre otras. Conclusiones: Niveles tóxicos de aluminio se han visto implicados en el desarrollo de enfermedades tanto neurodegenerativas como no degenerativas; y su capacidad para almacenarse de forma latente en diversos tejidos y órganos es considerada el principal mecanismo etiopatogénico.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sandra Yucra Sevillano, Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú. Universidad Católica de Santa María, Escuela de Postgrado. Arequipa, Perú.

    

Julio Alberto Fuenzalida Valdivia, Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú.

   

Miguel Fernando Farfán Delgado, Dr, Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú. Asociación Peruana de Facultades de Medicina (ASPEFAM). Lima, Perú.

  

Karlo Aurelio Terreros Abril, Universidad Católica de Santa María, Facultad de Medicina Humana. Arequipa, Perú.

  

Citas

Choquenaira-Quispe C, Yucra HR, Villanueva JA, Gonzales-Condori EG. In vitro release of aluminum from the geophagic clay “Chacco” in the Peruvian highlands: chemical characterization and health risk assessment. J Environ Sci Heal B [Internet]. 2023; 58(4): 294-303. Disponible en: https://doi.org/10.1080/03601234.2022.2161795

Choquenaira C. Caracterización fisicoquímica y liberación de aluminio, in vitro - in vivo, de la arcilla (Chaco) – 2015 [tesis de maestría en Internet]. Arequipa: Universidad Católica de Santa María; 2016. Disponible en: https://hdl.handle.net/20.500.12390/188

Fernández-Maestre R. Aluminio: ingestión, absorción, excreción y toxicidad. Rev Costarric Salud Pública [Internet]. 2014; 23(2): 111-116. Disponible en: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-14292014000200003&lng=en&tlng=es

Klotz K, Weistenhöfer W, Neff F, Hartwig A, van Thriel C, Drexler H. The health effects of aluminum exposure. Dtsch Arztebl Int [Internet]. 2017; 114(39): 653-659. Disponible en: https://doi.org/10.3238%2Farztebl.2017.0653

Fermo P, Soddu G, Miani A, Comite V. Quantification of the aluminum content leached into foods baked using aluminum foil. Int J Environ Res Public Health [Internet]. 2020; 17(22): 8357. Disponible en: https://doi.org/10.3390/ijerph17228357

Niu Q. Overview of the relationship between aluminum exposure and health of human being [Internet]. En: Niu Q, editor. Neurotoxicity of Aluminum. Singapore: Springer; 2018. pp. 1-31. Disponible en: https://doi.org/10.1007/978-981-13-1370-7_1

Weiss P. Los comedores peruanos de tierra. An Fac Med UNMSM [Internet]. 1951; 34(4): 537-547. Disponible en: https://doi.org/10.15381/anales.v34i4.9541

Lubkowska A, Chlubek D. Aluminum in the human environment - Absorption and toxicity. Trace Elements and Electrolytes [Internet]. 2015; 32(2): 52-59. Disponible en: http://dx.doi.org/10.5414/TEX01357

Bast-Pettersen R. Neuropsychological function among workers exposed to aluminum – a mini-review. Ind Health [Internet]. 2021; 60(2): 97-105. Disponible en: https://doi.org/10.2486/indhealth.2021-0131

Bassioni G, Mohammed FS, Al Zubaidy E, Kobrsi I. Risk assessment of using aluminum foil in food preparation. Int J Electrochem Sci [Internet]. 2012; 7(5): 4498-4509. Disponible en: http://www.electrochemsci.org/papers/vol7/7054498.pdf

Weidenhamer JD, Fitzpatrick MP, Biro AM, Kobunski PA, Hudson MR, Corbin RW, et al. Metal exposures from aluminum cookware: an unrecognized public health risk in developing countries. Sci Total Environ [Internet]. 2017; 579: 805-813. Disponible en: https://doi.org/10.1016/j.scitotenv.2016.11.023

Sander S, Kappenstein O, Ebner I, Fritsch KA, Schmidt R, Pfaff K, et al. Release of aluminium and thallium ions from uncoated food contact materials made of aluminium alloys into food and food simulant. PLoS One [Internet]. 2018; 13(7): e0200778. Disponible en: https://doi.org/10.1371/journal.pone.0200778

Stahl T, Falk S, Rohrbeck A, Georgii S, Herzog C, Wiegand A, et al. Migration of aluminum from food contact materials to food—a health risk for consumers? Part I of III: exposure to aluminum, release of aluminum, tolerable weekly intake (TWI), toxicological effects of aluminum, study design, and methods. Environ Sci Eur [Internet]. 2017; 29(1): 19. Disponible en: https://doi.org/10.1186/s12302-017-0116-y

Stahl T, Taschan H, Brunn H. Aluminium content of selected foods and food products. Environ Sci Eur [Internet]. 2011; 23(1): 37. Disponible en: https://doi.org/10.1186/2190-4715-23-37

Dordevic D, Buchtova H, Jancikova S, Macharackova B, Jarosova M, Vitez T, et al. Aluminum contamination of food during culinary preparation: case study with aluminum foil and consumers’ preferences. Food Sci Nutr [Internet]. 2019; 7(10): 3349-3360. Disponible en: https://doi.org/10.1002/fsn3.1204

Ramirez GF, Copa VJ. Phasa: todo sobre la arcilla comestible. Rev Cient Cienc Méd [Internet]. 2020; 23(2): 240-246. Disponible en: http://www.scielo.org.bo/pdf/rccm/v23n2/v23n2_a15.pdf

Castillo O, Frisancho O. El “chaco”: arcilla medicinal comestible del altiplano peruano y sus propiedades en la patología digestiva. Rev Gastroenterol Perú [Internet]. 2015; 35(1): 97-99. Disponible en: http://www.scielo.org.pe/pdf/rgp/v35n1/a13v35n1.pdf

Roque L. Caracterización físico-química y grado de conocimiento de los consumidores y comercializadores de las arcillas comestibles (cha´qo) de la región de Puno [tesis de doctorado en Internet]. Puno: Universidad Nacional del Altiplano; 2017. Disponible en: http://repositorio.unap.edu.pe/handle/20.500.14082/6208

Rosario LS. Propiedades curativas y usos potenciales en procesos inflamatorios y fases proliferativas de cicatrización con arcillas. Healing Wounds & Skin Conditions Foundation HW&SC. Abril 2018-noviembre 2018 [tesis de doctorado en Internet]. Santo Domingo (DO): Universidad Nacional Pedro Henríquez Ureña; 2018. Disponible en: https://repositorio.unphu.edu.do/handle/123456789/1400

Walton JR. Bioavailable aluminum: its metabolism and effects on the environment [Internet]. En: Nriagu JO, editor. Encyclopedia of Environmental Health. Elsevier; 2019. pp. 328-339. Disponible en: https://doi.org/10.1016/B978-0-444-52272-6.00334-2

Harris WR, Berthon G, Day JP, Exley C, Flaten TP, Forbes WF, et al. Speciation of aluminum in biological systems. J Toxicol Environ [Internet]. 1996; 48(6): 543-568. Disponible en: https://doi.org/10.1080/009841096161069

Whitehead MW, Farrar G, Christie GL, Blair JA, Thompson RP, Powell JJ. Mechanisms of aluminum absorption in rats. Am J Clin Nutr [Internet]. 1997; 65(5): 446-452. Disponible en: https://doi.org/10.1093/ajcn/65.5.1446

Kandimalla R, Vallamkondu J, Corgiat EB, Gill KD. Understanding aspects of aluminum exposure in Alzheimer’s disease development. Brain Pathol [Internet]. 2016; 26(2): 139-154. Disponible en: https://doi.org/10.1111/bpa.12333

Berthon G. Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity. Coord Chem Rev [Internet]. 2002; 228(2): 319-341. Disponible en: https://doi.org/10.1016/S0010-8545(02)00021-8

Tichati L, Benzaid C, Trea F, Mahmoud R, Kheireddine O. Ameliorating effects of Rhamnus alaternus L. aqueous extract on aluminum chloride-induced nephrotoxicity via attenuation of oxidative stress in male Wistar rats. Comp Clin Path [Internet]. 2022; 31(6): 1025-1036. Disponible en: https://doi.org/10.1007/s00580-022-03405-6

Kaneko N, Sugioka T, Sakurai H. Aluminum compounds enhance lipid peroxidation in liposomes: insight into cellular damage caused by oxidative stress. J Inorg Biochem [Internet]. 2007; 101(6): 967-975. Disponible en: https://doi.org/10.1016/j.jinorgbio.2007.03.005

Kumar V, Bal A, Gill KD. Susceptibility of mitochondrial superoxide dismutase to aluminium induced oxidative damage. Toxicology [Internet]. 2009; 255(3): 117-123. Disponible en: https://doi.org/10.1016/j.tox.2008.10.009

Jouhanneau P, Raisbeck GM, Yiou F, Lacour B, Banide H, Drüeke TB. Gastrointestinal absorption, tissue retention, and urinary excretion of dietary aluminum in rats determined by using 26Al. Clin Chem [Internet]. 1997; 43(6): 1023-1028. Disponible en: https://doi.org/10.1093/clinchem/43.6.1023

Gómez MS. Alteraciones neurológicas y psiquiátricas secundarias a la exposición al aluminio. Cuad Med Forense [Internet]. 2001; 7(24): 17-24. Disponible en: https://scielo.isciii.es/pdf/cmf/n24/original2.pdf

Kim Y, Olivi L, Cheong JH, Maertens A, Bressler JP. Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells. Toxicol Appl Pharmacol [Internet]. 2007; 220(3): 349-356. Disponible en: https://doi.org/10.1016/j.taap.2007.02.001

Igbokwe IO, Igwenagu E, Igbokwe NA. Aluminium toxicosis: a review of toxic actions and effects. Interdiscip Toxicol [Internet]. 2020; 12(2): 45-70. Disponible en: https://doi.org/10.2478%2Fintox-2019-0007

Suomi J, Tuominen P. Cumulative risk assessment of the dietary heavy metal and aluminum exposure of Finnish adults. Environ Monit Assess [Internet]. 2023; 195(7): 809. Disponible en: https://doi.org/10.1007/s10661-023-11427-y

Reichert KP, Pillat MM, Schetinger MR, Bottari NB, Palma TV, Assmann CE, et al. Aluminum-induced alterations of purinergic signalling in embryonic neural progenitor cells. Chemosphere [Internet]. 2020; 251: 126642. Disponible en: https://doi.org/10.1016/j.chemosphere.2020.126642

Exley C. The toxicity of aluminium in humans. Morphologie [Internet]. 2016; 100(329): 51-55. Disponible en: https://doi.org/10.1016/j.morpho.2015.12.003

Alasfar RH, Isaifan RJ. Aluminum environmental pollution: the silent killer. Environ Sci Pollut Res Int [Internet]. 2021; 28(33): 44587-44597. Disponible en: https://doi.org/10.1007/s11356-021-14700-0

Lu X. occupational exposure to aluminum and cognitive impairment. Adv Exp Med Biol [Internet]. 2018; 1091: 85-97. Disponible en: https://doi.org/10.1007/978-981-13-1370-7_5

Fernandes R, Corrêa M, Aragão WA, Nascimento P, Cartágenes SC, Rodrigues C, et al. Preclinical evidences of aluminum-induced neurotoxicity in hippocampus and pre-frontal cortex of rats exposed to low doses. Ecotoxicol Environ Saf [Internet]. 2020; 206: 111139. Disponible en: https://doi.org/10.1016/j.ecoenv.2020.111139

Sadek KM, Lebda MA, Abouzed TK. The possible neuroprotective effects of melatonin in aluminum chloride-induced neurotoxicity via antioxidant pathway and Nrf2 signaling apart from metal chelation. Environ Sci Pollut Res [Internet]. 2019; 26(9): 9174-9183. Disponible en: https://doi.org/10.1007/s11356-019-04430-9

Esparza JL, Gómez M, Domingo JL. Role of melatonin in aluminum-related neurodegenerative disorders: a review. Biol Trace Elem Res [Internet]. 2018; 188(1): 60-67. Disponible en: https://doi.org/10.1007/s12011-018-1372-4

Cirovic A, Cirovic A, Orisakwe OE, Lima RR. Local and systemic hypoxia as inductors of increased aluminum and iron brain accumulation promoting the onset of Alzheimer’s disease. Biol Trace Elem Res [Internet]. 2023; 201: 5134-5142. Disponible en: https://doi.org/10.1007/s12011-023-03599-y

Souza-Monteiro D, Ferreira R, Eiró L, de Oliveira Lima L, Balbinot G, da Paz SP, et al. Long-term exposure to low doses of aluminum affects mineral content and microarchitecture of rats alveolar bone. Environ Sci Pollut Res [Internet]. 2021; 28(33): 45879-45890. Disponible en: https://doi.org/10.1007/s11356-021-13937-z

Hong CH, Falvey C, Harris TB, Simonsick EM, Satterfield S, Ferrucci L, et al. Anemia and risk of dementia in older adults. Neurology [Internet]. 2013; 81(6): 528-533. Disponible en: https://doi.org/10.1212/WNL.0b013e31829e701d

Zhang Q. Aluminum-induced neural cell death. Adv Exp Med Biol [Internet]. 2018; 1091: 129-160. Disponible en: https://doi.org/10.1007/978-981-13-1370-7_8

Zatta P, Lain E, Cagnolini C. Effects of aluminum on activity of Krebs cycle enzymes and glutamate dehydrogenase in rat brain homogenate. Eur J Biochem [Internet]. 2000; 267(10): 3049-3055. Disponible en: https://doi.org/10.1046/j.1432-1033.2000.01328.x

Bondy SC. The neurotoxicity of environmental aluminum is still an issue. Neurotoxicology [Internet]. 2010; 31(5): 575-581. Disponible en: https://doi.org/10.1016/j.neuro.2010.05.009

Qian ZM, Wu XM, Fan M, Yang L, Du F, Yung WH, et al. Divalent metal transporter 1 is a hypoxia-inducible gene. J Cell Physiol [Internet]. 2011; 226(6): 1596-1603. Disponible en: https://doi.org/10.1002/jcp.22485

Wang L. Entry and deposit of aluminum in the brain. Adv Exp Med Biol [Internet]. 2018; 1091: 39-51. Disponible en: https://doi.org/10.1007/978-981-13-1370-7_3

Sakajiri T, Yamamura T, Kikuchi T, Ichimura K, Sawada T, Yajima H. Absence of binding between the human transferrin receptor and the transferrin complex of biological toxic trace element, aluminum, because of an incomplete open/closed form of the complex. Biol Trace Elem Res [Internet]. 2010; 136(3): 279-286. Disponible en: https://doi.org/10.1007/s12011-009-8547-y

Pérez G, Pregi N, Vittori D, Di Risio C, Garbossa G, Nesse A. Aluminum exposure affects transferrin-dependent and -independent iron uptake by K562 cells. Biochim Biophys Acta [Internet]. 2005; 1745(1): 124-130. Disponible en: https://doi.org/10.1016/j.bbamcr.2004.12.002

Bhattacharjee S, Zhao Y, Hill JM, Culicchia F, Kruck TP, Percy ME, et al. Selective accumulation of aluminum in cerebral arteries in Alzheimer’s disease (AD). J Inorg Biochem [Internet]. 2013; 126: 35-37. Disponible en: https://doi.org/10.1016/j.jinorgbio.2013.05.007

Griffin P, Apostolova L, Dickerson BC, Rabinovici G, Salloway S, Brandt K, et al. Developments in understanding early onset Alzheimer’s disease. Alzheimer’s Dement [Internet]. 2023; 19(Suppl 9): S126-S131. Disponible en: https://doi.org/10.1002/alz.13353

Van Dyke N, Yenugadhati N, Birkett NJ, Lindsay J, Turner MC, Willhite CC, et al. Association between aluminum in drinking water and incident Alzheimer’s disease in the Canadian Study of Health and Aging cohort. Neurotoxicology [Internet]. 2021; 83: 157-165. Disponible en: https://doi.org/10.1016/j.neuro.2020.04.002

Gauthier E, Fortier I, Courchesne F, Pepin P, Mortimer J, Gauvreau D. Aluminum forms in drinking water and risk of Alzheimer’s disease. Environ Res [Internet]. 2000; 84(3): 234-246. Disponible en: https://doi.org/10.1006/enrs.2000.4101

Das N, Raymick J, Sarkar S. Role of metals in Alzheimer’s disease. Metab Brain Dis [Internet]. 2021; 36(7): 1627-1639. Disponible en: https://doi.org/10.1007/s11011-021-00765-w

Maya S, Prakash T, das Madhu K, Goli D. Multifaceted effects of aluminium in neurodegenerative diseases: a review. Biomed Pharmacother [Internet]. 2016; 83: 746-754. Disponible en: https://doi.org/10.1016/j.biopha.2016.07.035

Mirza A, King A, Troakes C, Exley C. The identification of aluminum in human brain tissue using lumogallion and fluorescence microscopy. J Alzheimer’s Dis [Internet]. 2016; 54(4): 1333-1338. Disponible en: https://doi.org/10.3233%2FJAD-160648

Virk SA, Eslick GD. Aluminum levels in brain, serum, and cerebrospinal fluid are higher in Alzheimer’s disease cases than in controls: a series of meta-analyses. J Alzheimers Dis [Internet]. 2015; 47(3): 629-638. Disponible en: https://doi.org/10.3233/jad-150193

Walton JR, Wang MX. APP expression, distribution and accumulation are altered by aluminum in a rodent model for Alzheimer’s disease. J Inorg Biochem [Internet]. 2009; 103(11): 1548-1554. Disponible en: https://doi.org/10.1016/j.jinorgbio.2009.07.027

Nie J. Exposure to aluminum in daily life and Alzheimer’s disease [Internet]. En: Niu Q, editor. Neurotoxicity of Aluminum. Singapore: Springer; 2018. pp. 99–111. Disponible en: https://doi.org/10.1007/978-981-13-1370-7_6

Drochioiu G, Murariu M, Ion L, Habasescu L. Iron and aluminum interaction with amyloid-beta peptides associated with Alzheimer’s disease. AIP Conf Proc [Internet]. 2014; 1618(1): 99-100. Disponible en: https://doi.org/10.1063/1.4897686

Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M. Aluminum neurotoxicity and autophagy: a mechanistic view. Neurol Res [Internet]. 2023; 45(3): 216-225. Disponible en: https://doi.org/10.1080/01616412.2022.2132727

Lupaescu AV, Humelnicu I, Petre BA, Ciobanu CI, Drochioiu G. Direct evidence for binding of aluminum to NAP anti-amyloid peptide and its analogs. Eur J Mass Spectrom (Chichester) [Internet]. 2020; 26(2): 106-116. Disponible en: https://doi.org/10.1177/1469066719877714

Walton JR. Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer’s disease. J Alzheimers Dis [Internet]. 2010; 22(1): 65-72. Disponible en: https://doi.org/10.3233/jad-2010-100486

Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA. Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci [Internet]. 1988; 85(13): 4884-4888. Disponible en: https://doi.org/10.1073%2Fpnas.85.13.4884

Mena R, Edwards PC, Harrington CR, Mukaetova-Ladinska EB, Wischik CM. Staging the pathological assembly of truncated tau protein into paired helical filaments in Alzheimer’s disease. Acta Neuropathol [Internet]. 1996; 91(6): 633-641. Disponible en: https://doi.org/10.1007/s004010050477

Mold M, Linhart C, Gómez-Ramírez J, Villegas-Lanau A, Exley C. Aluminum and amyloid-β in familial Alzheimer’s disease. J Alzheimer’s Dis [Internet]. 2020; 73(4): 1627-1635. Disponible en: https://doi.org/10.3233/jad-191140

Yumoto S, Kakimi S, Ishikawa A. Colocalization of aluminum and iron in nuclei of nerve cells in brains of patients with Alzheimer’s disease. J Alzheimer’s Dis [Internet]. 2018; 65(4): 1267-1281. Disponible en: https://doi.org/10.3233/JAD-171108

Roos PM, Vesterberg O, Syversen T, Flaten TP, Nordberg M. Metal concentrations in cerebrospinal fluid and blood plasma from patients with amyotrophic lateral sclerosis. Biol Trace Elem Res [Internet]. 2013; 151(2): 159-170. Disponible en: https://doi.org/10.1007/s12011-012-9547-x

Maya S, Prakash T, Goli D. Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: relevance to sporadic amyotrophic lateral sclerosis. Eur J Pharmacol [Internet]. 2018; 835: 41-51. Disponible en: https://doi.org/10.1016/j.ejphar.2018.07.058

Tanridag T, Coskun T, Hürdag C, Arbak S, Aktan S, Yegen B. Motor neuron degeneration due to aluminium deposition in the spinal cord: a light microscopical study. Acta Histochem [Internet]. 1999; 101(2): 193-201. Disponible en: https://doi.org/10.1016/s0065-1281(99)80018-x

Cannata JB, Briggs JD, Junor BJ, Fell GS. Aluminium hydroxide intake: real risk of aluminium toxicity. Br Med J (Clin Res Ed) [Internet]. 1983; 286(6382): 1937. Disponible en: https://doi.org/10.1136%2Fbmj.286.6382.1937-a

Liu Y, Yuan Y, Xiao Y, Li Y, Yu Y, Mo T, et al. Associations of plasma metal concentrations with the decline in kidney function: a longitudinal study of Chinese adults. Ecotoxicol Environ Saf [Internet]. 2020; 189: 110006. Disponible en: https://doi.org/10.1016/j.ecoenv.2019.110006

Alfrey AC, LeGendre GR, Kaehny WD. The dialysis encephalopathy syndrome – Possible aluminum intoxication. N Engl J Med [Internet]. 1976; 294(4): 184-188. Disponible en: https://doi.org/10.1056/nejm197601222940402

Rob PM, Niederstadt C, Reusche E. Dementia in patients undergoing long-term dialysis: aetiology, differential diagnoses, epidemiology and management. CNS Drugs [Internet]. 2001; 15(9): 691-699. Disponible en: https://doi.org/10.2165/00023210-200115090-00003

Zeng X, Macleod J, Berriault C, Debono NL, Arrandale VH, Harris AM, et al. Aluminum dust exposure and risk of neurodegenerative diseases in a cohort of male miners in Ontario, Canada. Scand J Work Environ Health [Internet]. 2021; 47(7): 531-539. Disponible en: https://doi.org/10.5271/sjweh.3974

Xu SM, Zhang YW, Ju XF, Gao D, Yang H, Wang LP, et al. Cross-sectional study based on occupational aluminium exposure population. Environ Toxicol Pharmacol [Internet]. 2021; 83: 103581. Disponible en: https://doi.org/10.1016/j.etap.2020.103581

Bondy SC. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology [Internet]. 2016; 52: 222-229. Disponible en: https://doi.org/10.1016/j.neuro.2015.12.002

Lu XT, Xu SM, Zhang YW, Gao D, Yang H, Song J, et al. Longitudinal study of the effects of occupational aluminium exposure on workers’ cognition. Chemosphere [Internet]. 2021; 271: 129569. Disponible en: https://doi.org/10.1016/j.chemosphere.2021.129569

Descargas

Publicado

2024-06-28

Cómo citar

1.
Yucra Sevillano S, Fuenzalida Valdivia JA, Farfán Delgado MF, Terreros Abril KA. Efectos tóxicos del aluminio: una intoxicación silenciosa. Rev Neuropsiquiatr [Internet]. 28 de junio de 2024 [citado 31 de agosto de 2024];87(2):169-80. Disponible en: https://revistas.upch.edu.pe/index.php/RNP/article/view/5224

Número

Sección

ARTÍCULO DE REVISION