Variation of head circumference variation in preterm infants less than 34 weeks to histologic chorioamnionitis

Authors

DOI:

https://doi.org/10.20453/rnp.v86i3-1.4977

Keywords:

Head circumference, histologic chorioamnionitis, preterm, sepsis, newborn

Abstract

Objective: To analyze the variations of head circumference (HC) in preterm infants, born with less than 34 weeks of gestation, exposed to histologic chorioamnionitis (CAH), and observed until 2 years of corrected age. Materials and methods: This is a cohort study derived from two prospective studies. The analyzed data corresponded to HC measures obtained from the subjects at three points: birth, 40 weeks, and 2 years of corrected age. The subjects were classified in two groups: exposed and not exposed to CAH. Preterm infants with CAH were divided according to its subtype in chorioamnionitis, subchorionitis and chorioamnionitis plus funisitis. Results: Out of 91 preterm infants included in the study. 41.8% (38/91) presented CAH. At birth, the average measure of HC in exposed infants was 27.7 cm (31,2 percentile), while in not exposed infants it was 28.3 cm. (42,1 percentile). At 40 weeks and at 2 years, the average measures were similar. The CAH chorioamnionitis subtype was found to be associated with PC growth
retardation (p<0,05). A lesser gestational age (p=0.005) was related with greater cranial growth speed. Conclusions: Newborns younger than 34 weeks exposed to CAH had lower HC percentile at birth. We observed a recovery of HC at 40 weeks. The chorioamnionitis subtype was related to lower HC at 2 years of corrected age. Intrauterine growth  restriction (IUGR) enhanced this association at these three points, while sepsis did so only at 40 weeks. Further research is required to confirm these findings

References

Kim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features and clinical significance. Am J Obstet Gynecol [Internet]. 2015; 213 (4 Supl.): S29-S52. Disponible en: https://www.ajog.org/article/S0002-9378(15)00910-2/fulltext

Guillén N, Llerena C, Samalvides S, Vila J, Juárez T, Cáceres J. Riesgo de daño cerebral en prematuros menores de 34 semanas expuestos a corioamnionitis histológica, Lima, Perú. Rev Peru Med Exp Salud Pública [Internet]. 2020; 37(2): 229-238. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342020000200229

Guillén-Pinto D. Diagnóstico de las lesiones cerebrales en los prematuros menores de 34 semanas: incidencia, factores asociados y pronóstico [tesis de doctorado en Internet]. Lima: Universidad Peruana Cayetano Heredia; 2004. Disponible en: https://renati.sunedu.gob.pe/handle/sunedu/3410016

Instituto Nacional de Estadística e Informática. Encuesta Demográfica y de Salud Familiar 2015: Nacional y Departamental [Internet]. Lima: INEI; 2015. Disponible en: https://www.inei.gob.pe/media/MenuRecursivo/publicaciones_digitales/Est/Lib1356/

Thomas W, Speer CP. Chorioamnionitis: important risk factor or innocent bystander for neonatal outcome? Neonatology [Internet]. 2011; 99(3): 177-187. Disponible en: https://pubmed.ncbi.nlm.nih.gov/20881433/

Anblagan D, Pataky R, Evans MJ, Telford EJ, Serag A, Sparrow S, et al. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. Sci Rep [Internet]. 2016; 6: 37932. Disponible en: https://www.nature.com/articles/srep37932

Gall AR, Amoah S, Kitase Y, Jantzie LL. Placental mediated mechanisms of perinatal brain injury: evolving inflammation and exosomes. Exp Neurol [Internet]. 2022; 347: 113914. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0014488621003228?via%3Dihub

Ahlfors K, Ivarsson SA, Bjerre I. Microcephaly and congenital cytomegalovirus infection: a combined prospective and retrospective study of a swedish infant population. Pediatrics [Internet]. 1986; 78(6): 1058-1063. Disponible en: https://pubmed.ncbi.nlm.nih.gov/3024098/

Carter RC, Jacobson SW, Molteno CD, Jacobson JL. Fetal alcohol exposure, iron-deficiency anemia, and infant growth. Pediatrics [Internet]. 2007; 120: 559-567. Disponible en: https://publications.aap.org/pediatrics/article-abstract/120/3/559/71202/Fetal-Alcohol-Exposure-Iron-Deficiency-Anemia-and?redirectedFrom=fulltext

Berkowitz G, Wetmur JG, Birman-Deych E, Obel J, Lapinski RH, Godbold JH, et al. In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ Health Perspect [Internet]. 2004; 112(3): 388-391. Disponible en: https://ehp.niehs.nih.gov/doi/10.1289/ehp.6414

Dobbing J. The later growth of the brain and its vulnerability. Pediatrics [Internet]. 1974; 53(1): 2-6. Disponible en: https://pubmed.ncbi.nlm.nih.gov/4588131/

Freud A, Wainstock T, Sheiner E, Beloosesky R, Fischer L, Landau D, et al. Maternal chorioamnionitis & long term neurological morbidity in the offspring. Eur J Paediatr Neurol [Internet]. 2019; 23(3): 484-490. Disponible en: https://www.ejpn-journal.com/article/S1090-3798(18)30458-6/fulltext

Sung JH, Choi SJ, Oh SY, Roh CR, Kim JH. Revisiting the diagnostic criteria of clinical chorioamnionitis in preterm birth. BJOG [Internet]. 2017; 124(5): 775-783. Disponible en: https://obgyn.onlinelibrary.wiley.com/doi/10.1111/1471-0528.14176

Mu SC, Lin CH, Chen YL, Ma HJ, Lee JS, Li MI, et al. Impact on neonatal outcome and anthropometric growth in very low birth weight infants with histological chorioamnionitis. J Formos Med Assoc [Internet]. 2008; 107(4): 304-310. Disponible en: https://www.sciencedirect.com/science/article/pii/S0929664608600911?via%3Dihub

Ochoa TJ, Zegarra J, Bellomo S, Cárcamo CP, Cam L, Castañeda A, et al. Randomized controlled trial of bovine lactoferrin for prevention of sepsis and neurodevelopment impairment in infants weighing less than 2000 grams. J Pediatr [Internet]. 2020; 219: 118-125. Disponible en: https://www.jpeds.com/article/S0022-3476(19)31717-2/fulltext

Redline RW, Faye-Petersen O, Heller D, Qureshi F, Savell V, Vogler C. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol [Internet]. 2003; 6(5): 435-448. Disponible en: https://journals.sagepub.com/doi/10.1007/s10024-003-7070-y

Onyango AW, Pinol AJ, De Onis M. Managing data for a multicountry longitudinal study: experience from the WHO Multicentre Growth Reference Study. Food Nutr Bull [Internet]. 2004; 25(1): S46-S52. Disponible en: https://pubmed.ncbi.nlm.nih.gov/15069919/

Fenton T. A new growth chart for preterm babies: Babson and Benda's chart updated with recent data and a new format. BMC Pediatr [Internet]. 2003; 16(3): 13. Disponible en: https://bmcpediatr.biomedcentral.com/articles/10.1186/1471-2431-3-13

Zea-Vera A, Turin CG, Ochoa TJ. Unificar los criterios de sepsis neonatal tardía: propuesta de un algoritmo de vigilancia diagnóstica. Rev Peru Med Exp Salud Pública [Internet]. 2014; 31(2): 358-363. Disponible en: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342014000200026

Xiao D, Zhu T, Qu Y, Gou X, Huang Q, Li X, et al. Maternal chorioamnionitis and neurodevelopmental outcomes in preterm and very preterm neonates: a meta-analysis. PLoS One [Internet]. 2018; 13(12): e0208302. Disponible en: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0208302

Maisonneuve E, Ancel PY, Foix-L’Helias L, Marret S, Kayem G. Impact of clinical and/or histological chorioamnionitis on neurodevelopmental outcomes in preterm infants: a literature review. J Gynecol Obstet Hum Reprod [Internet]. 2017; 46(4): 307-316. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S2468784717300338?via%3Dihub

Granger C, Spittle AJ, Walsh J, Pyman J, Anderson PJ, Thompson DK, et al. Histologic chorioamnionitis in preterm infants: correlation with brain magnetic resonance imaging at term equivalent age. BMC Pediatr [Internet]. 2018; 18(1): 63. Disponible en: https://bmcpediatr.biomedcentral.com/articles/10.1186/s12887-018-1001-6

Williams MC, O’Brien WF, Nelson RN, Spellacy WN. Histologic chorioamnionitis is associated with fetal growth restriction in term and preterm infants. Am J Obstet Gynecol [Internet]. 2000; 183(5): 1094-1099. Disponible en: https://www.ajog.org/article/S0002-9378(00)37659-1/fulltext

Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. Ann Neurol [Internet]. 1998; 44: 665-675. Disponible en: https://pubmed.ncbi.nlm.nih.gov/9778266/

Yoon BH, Jun JK, Romero R, Park KH, Gomez R, Choi JH, et al. Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am J Obs Gynecol [Internet]. 1997; 177(1): 19-26. Disponible en: https://www.ajog.org/article/S0002-9378(97)70432-0/fulltext

Barrington, KJ. The adverse neuro-developmental effects of postnatal steroids in the preterm infant: a systematic review of RCTs. BMC Pediatrics [Internet]. 2001; 1: 1. Disponible en: https://bmcpediatr.biomedcentral.com/articles/10.1186/1471-2431-1-1

Published

2023-10-03

How to Cite

1.
Pellanne-Aro JP, Guillén-Pinto DG-P. Variation of head circumference variation in preterm infants less than 34 weeks to histologic chorioamnionitis. Rev Neuropsiquiatr [Internet]. 2023 Oct. 3 [cited 2024 May 16];86(3):214-23. Available from: https://revistas.upch.edu.pe/index.php/RNP/article/view/4977