Avances genómicos de la última década y su influencia en el enfoque diagnóstico de la discapacidad intelectual.
DOI:
https://doi.org/10.20453/rnp.v84i1.3936Palabras clave:
inteligencia, discapacidad intelectual, secuenciación de exoma, análisis de micromatrices, variantes genéticas, variantes en el número de copiasResumen
La inteligencia humana es un rasgo poligénico (~1000 genes) con una influencia de cada gen aproximadamente ascendente al 0,1%. Es un atributo indispensable para el desarrollo personal, familiar, social y económico y tiene, además, una relación directamente proporcional al mantenimiento de la salud y a una mayor esperanza de vida. La discapacidad intelectual, consecuentemente, afecta todas estas áreas y constituye un problema de salud pública en varios países de Latinoamérica en los que exhibe una prevalencia mayor al 10%. La etiología de la discapacidad intelectual sea aislada o sindrómica, es genética hasta en un 85% de los casos; se diagnostica mediante las nuevas tecnologías de búsqueda en el genoma, tales como la secuenciación masiva y el análisis cromosómico por micromatrices. El diagnóstico etiológico de la discapacidad intelectual permite la selección de terapias específicas, la determinación del pronóstico y de riesgos de recurrencia familiar e individual.
Descargas
Citas
Real Academia Española. Inteligencia. Madrid: Real Academia Española; 2019. (Citado el 30 de marzo de 2020) Disponible en: http://lema.rae.es/drae2001/ srv/search?id=2qlbggjrBDXX2HVuWUL7
Sternberg RJ. Intelligence. Dialogues Clin Neurosci. 2012;14(1):19–27.
Plomin R, von Stumm S. The new genetics of intelligence. Nat Rev Genet. 2018;19(3):148–59.
Goriounova NA, Mansvelder HD. Genes, cells and brain areas of intelligence. Front Hum Neurosci. 2019; 13:0-0. (Citado el 30 de marzo de 2020) Disponible en: https://www.frontiersin.org/ articles/10.3389/fnhum.2019.00044/full
Deary IJ, Harris SE, Hill WD. What genome-wide association studies reveal about the association between intelligence and physical health, illness, and mortality. Curr Opin Psychol. 2019; 27:6–12.
Wechsler D. The measurement and appraisal of adult intelligence. Filadelfia: The Williams & Wilkins Company; 1958.
Sternberg R. Encyclopedia of human intelligence. Wisconsin: Macmillan Library; 1994.
Wechsler D. WAIS-IV Administration and scoring manual (Wechsler Adult Intelligence Scale). Pearson; 2008.
Wrigth J. International Encyclopedia of the Social & Behavioral Sciences. 2nd ed. Elsevier; 2015.
Lynn R, Vanhanen T. IQ and the Wealth of Nations. Washington: Summit Publishers; 2002.
Lynn R, Meisenberg G, Mikk J, Williams A. National IQs predict differences in scholastic achievement in 67 countries. J Biosoc Sci. 2007;39(6):861–74.
Duncan J, Seitz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, et al. A neural basis for general intelligence. Science. 2000;289(5478):457–60.
Haier RJ, Jung RE. Beautiful minds (i.e., brains) and the neural basis of intelligence. Behav Brain Sci. 2007;30(2):174–8.
Coleman JRI, Bryois J, Gaspar HA, Jansen PR, Savage JE, Skene N, et al. Biological annotation of genetic loci associated with intelligence in a meta-analysis of 87 740 individuals. Mol Psychiatry. 2019;24(2):182– 97.
Hill WD, Marioni RE, Maghzian O, Ritchie SJ, Hagenaars SP, McIntosh AM, et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol Psychiatry. 2019;24(2):169–81.
Zechner U, Wilda M, Kehrer-Sawatzki H, Vogel W, Fundele R, Hameister H. A high density of X-linked genes for general cognitive ability: a run-away process shaping human evolution? Trends Genet. 2001;17(12):697–701.
Skuse DH. X-linked genes and mental functioning. Hum Mol Genet. 2005;14 (S1):27-32.
Bouchard TJ, McGue M. Genetic and environmental influences on human psychological differences. J Neurobiol. 2003; 54(1):4–45.
Panizzon MS, Vuoksimaa E, Spoon KM, Jacobson KC, Lyons MJ, Franz CE, et al. Genetic and Environmental Influences of General Cognitive Ability: Is g a valid latent construct? Intelligence. 2014;43: 65–76.
Sauce B, Matzel LD. The paradox of intelligence: Heritability and malleability coexist in hidden gene- environment interplay. Psychol Bull. 2018;144(1):26– 47.
Chen Y, Chen C, Wu T, Qiu B, Zhang W, Fan J. Accessing the development and heritability of the capacity of cognitive control. Neuropsychologia. 2020;139: 107361.
Boat TF, Wu JT, Disorders C to E the SSIDP for C with M, Populations B on the H of S, Board on Children Y, Medicine I of, et al. Clinical Characteristics of Intellectual Disabilities. En: Mental Disorders and Disabilities Among Low-Income Children. Washington DC: National Academies Press (US); 2015 (Citado el 30 de marzo de 2020) Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK332877/
Brown KA, Parikh S, Patel DR. Understanding basic concepts of developmental diagnosis in children. Transl Pediatr. 2020;9(Suppl 1):S9–22.
Association AP. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Pub; 2013.
Kaufman L, Ayub M, Vincent JB. The genetic basis of non-syndromic intellectual disability: a review. J Neurodev Disord. 2010;2(4):182–209.
Gardner M, Amor D. Gardner and Sutherland’s Chromosome abnormalities and genetic counseling. Oxford: Oxford University Press; 2018.
Patel D, Cabral MD, Ho A, Merrick J. A clinical primer on intellectual disability. Translational Pediatrics. 2020;9(1):23–5.
Katz G, Lazcano-Ponce E. Intellectual disability: definition, etiological factors, classification, diagnosis, treatment and prognosis. Salud Pública México. 2008;50:132–41.
Maulik PK, Darmstadt GL. Childhood disability in low- and middle-income countries: Overview of screening, prevention, services, legislation, and epidemiology. Pediatrics. 2007;120 (Supplement 1):S1–55.
Mercadante MT, Evans-Lacko S, Paula CS. Perspectives of intellectual disability in Latin American countries: epidemiology, policy, and services for children and adults. Curr Opin Psychiatry. 2009;22(5):469–74.
Ropers HH. Genetics of early onset cognitive impairment. Annu Rev Genomics Hum Genet. 2010;11:161–87.
Klein E, Gallardo B, Chávez Ml, Abarca-Barriga H. Atlas de dismorfología pediátrica. Lima: Fondo Editorial del INSN; 2012.
Bejerot S, Nordin V. Autism spectrum syndrome replaces Asperger syndrome and autism. Lakartidningen. 2014;111(39):1660–3.
Sharma SR, Gonda X, Tarazi FI. Autism Spectrum Disorder: Classification, diagnosis and therapy. Pharmacol Ther. 2018;190:91–104.
Shulman C, Esler A, Morrier MJ, Rice CE. Diagnosis of autism spectrum disorder across the lifespan. Child Adolesc Psychiatr Clin N Am. 2020;29(2):253–73.
Le Hellard S, Steen VM. Genetic architecture of cognitive traits. Scand J Psychol. 2014;55(3):255–62.
Willemsen MH, Kleefstra T. Genetic diagnostics in intellectual disability: what is the benefit? Ned Tijdschr Geneeskd. 2014;158:A8098.
Malinowski J, Miller DT, Demmer L, Gannon J, Pereira EM, Schroeder MC, et al. Systematic evidence-based review: outcomes from exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability. Genet Med. 2020;22(6):986–1004.
Haraksingh RR, Snyder MP. Impacts of variation in the human genome on gene regulation. J Mol Biol. 2013;425(21):3970–7.
Lee S, Rudd S, Gratten J, Visscher PM, Prins JB, Dawson PA. Gene networks associated with non-syndromic intellectual disability. J Neurogenet. 2018; 32(1):6–14.
Sathyanesan A, Zhou J, Scafidi J, Heck DH, Sillitoe RV, Gallo V. Emerging connections between cerebellar development, behavior and complex brain disorders. Nat Rev Neurosci. 2019;20(5):298–313.
Tărlungeanu DC, Novarino G. Genomics in neurodevelopmental disorders: an avenue to personalized medicine. Exp Mol Med. 2018;50(8): 100. doi: 10.1038/s12276-018-0129-7
Vissers LELM, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17(1):9–18.
Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98(1):149–64.
Jamra R. Genetics of autosomal recessive intellectual disability. Med Genet. 2018;30(3):323–7.
Abarca Barriga H, Trubnykova M, Chávez M, La Serna J, Poterico JA. Factores de riesgo en las enfermedades genéticas. Acta Médica Peruana. 2018;35(1):43–50.
Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci U S A. 2010;107(3):961–8.
Abarca H, Campoverde G, Taquia E, Herrera H. Hallazgos citogenéticos de abortos en el Servicio de Citopatología y Citogenética del Hospital Nacional Guillermo Almenara Irigoyen- 1998-junio 2006. Revista del Cuerpo Médico. 2005; 1:0-0.
Guio H, Poterico JA, Levano KS, Cornejo-Olivas M, Mazzetti P, Manassero-Morales G, et al. Genetics and genomics in Peru: Clinical and research perspective. Mol Genet Genomic Med. 2018;6(6):873–86.
Vacca RA, Bawari S, Valenti D, Tewari D, Nabavi SF, Shirooie S, et al. Down syndrome: Neurobiological alterations and therapeutic targets. Neurosci Biobehav Rev. 2019;98:234–55.
Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–81.
Goldenberg P. An Update on common chromosome microdeletion and microduplication syndromes. Pediatr Ann. 2018;47(5):e198–203.
Grati FR, Molina Gomes D, Ferreira JCPB, Dupont C, Alesi V, Gouas L, et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat Diagn. 2015; 35(8):801–9.
Wang R, Lei T, Fu F, Li R, Jing X, Yang X, et al. Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in South China. Pediatr Neonatol. 2019;60(1):35–42.
Almal SH, Padh H. Implications of gene copy-number variation in health and diseases. J Hum Genet. 2012;57(1):6–13.
Lohan S, Spielmann M, Doelken SC, Flöttmann R, Muhammad F, Baig SM, et al. Microduplications encompassing the Sonic hedgehog limb enhancer ZRS are associated with Haas-type polysyndactyly and Laurin-Sandrow syndrome. Clin Genet. 2014;86(4):318–25.
Flöttmann R, Kragesteen BK, Geuer S, Socha M, Allou L, Sowińska-Seidler A, et al. Noncoding copy-number variations are associated with congenital limb malformation. Genet Med Off J Am Coll Med Genet. 2018;20(6):599–607.
Rooms L, Reyniers E, Kooy RF. Subtelomeric rearrangements in the mentally retarded: a comparison of detection methods. Hum Mutat. 2005;25(6):513–24.
Chiurazzi P, Pirozzi F. Advances in understanding – genetic basis of intellectual disability. F1000 Res. 2016;5:599–615.
Cummings JA, Clemens LG, Nunez AA. Mother counts: how effects of environmental contaminants on maternal care could affect the offspring and future generations. Front Neuroendocrinol. 2010;31(4): 440–51. 61. Govorko D, Bekdash RA, Zhang C, Sarkar DK. Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry. 2012;72(5):378–88.
Roozen S, Peters G-JY, Kok G, Townend D, Nijhuis J, Curfs L. Worldwide Prevalence of Fetal Alcohol Spectrum Disorders: A Systematic Literature Review Including Meta-Analysis. Alcohol Clin Exp Res. 2016;40(1):18–32.
Lange S, Probst C, Gmel G, Rehm J, Burd L, Popova S. Global prevalence of fetal alcohol spectrum disorder among children and youth: A systematic review and meta-analysis. JAMA Pediatr. 2017;171(10):948–56.
Messina MP, D’Angelo A, Battagliese G, Coriale G, Tarani L, Pichini S, et al. Fetal alcohol spectrum disorders awareness in health professionals: implications for psychiatry. Riv Psichiatr. 2020;55(2):79–89.
Burrowes SG, Salem NA, Tseng AM, Balaraman S, Pinson MR, Garcia C, et al. The BAF (BRG1/BRM-Associated Factor) Chromatin-Remodeling Complex Exhibits Ethanol Sensitivity in Fetal Neural Progenitor Cells and Regulates Transcription at the Mir-9-2 Encoding Gene Locus. Alcohol Fayettev N. 2017; 60:149–58. 66. Adams J. Similarities in genetic mental retardation and neuroteratogenic syndromes. Pharmacol Biochem Behav. 1996;55(4):683–90.
Suuberg A. Psychiatric and Developmental Effects of Isotretinoin (Retinoid) Treatment for Acne Vulgaris. Curr Ther Res Clin Exp. 2019; 90:27–31.
Liu Q, Van Bortle K, Zhang Y, Zhao M-T, Zhang JZ, Geller BS, et al. Disruption of mesoderm formation during cardiac differentiation due to developmental exposure to 13-cis-retinoic acid. Sci Rep. 2018;8:12960. doi: 10.1038/s41598-018-31192-0
Vendramini-Pittoli S, Guion-Almeida ML, Richieri-Costa A, Santos JM, Kokitsu-Nakata NM. Clinical findings in children with congenital anomalies and misoprostol intrauterine exposure: a study of 38 cases. J Pediatr Genet. 2013;2(4):173–80.
Vauzelle C, Beghin D, Cournot M-P, Elefant E. Birth defects after exposure to misoprostol in the first trimester of pregnancy: prospective follow-up study. Reprod Toxicol Elmsford N. 2013; 36:98–103.
Murphy ME, Westmark CJ. Folic Acid Fortification and Neural Tube Defect Risk: Analysis of the Food Fortification Initiative Dataset. Nutrients. 2020;12(1).
Ostrander B, Bale JF. Congenital and perinatal infections. Handb Clin Neurol. 2019;162:133–53.
al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, et al. The fetal origins of mental illness. Am J Obstet Gynecol. 2019;221(6):549–62.
Huang J, Zhu T, Qu Y, Mu D. Prenatal, Perinatal and Neonatal Risk Factors for Intellectual Disability: A Systemic Review and Meta-Analysis. PLoS ONE. 2016; 11(4): e0153655. doi: 10.1371/journal. pone.0153655
Fan Y-S, Ouyang X, Peng J, Sacharow S, Tekin M, Barbouth D, et al. Frequent detection of parental consanguinity in children with developmental disorders by a combined CGH and SNP microarray. Mol Cytogenet. 2013;6(1):38–43.
Wadhawan I, Hai Y, Foyouzi Yousefi N, Guo X, Graham JM, Rosenfeld JA. De novo copy number variants and parental age: Is there an association? Eur J Med Genet. 2019;103829.
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations, father’s age, and disease risk. Nature. 2012;488(7412):471–5.
Silverman W. Prevention of intellectual and developmental disabilities. Intellect Dev Disabil. 2009; 47(4):320–2.
Calderón-González R, Calderón-Sepúlveda RF.Prevention of mental retardation. Rev Neurol. 2003;36(2):184–94.
Eiris-Puñal J. Aportación de la genética y de los estudios neurometabólicos al diagnóstico del retraso mental: Neurología.com. Rev Neurol. 2006;43:S177- 180.
Clinical utility of genetic and genomic services: a position statement of the American College of Medical Genetics and Genomics. Genet Med. 2015;17(6):505–7.
Moeschler JB, Shevell M, American Academy of Pediatrics Committee on Genetics. Clinical genetic evaluation of the child with mental retardation or developmental delays. Pediatrics. 2006;117(6):2304– 16.
Moeschler JB, Shevell M, Genetics CO. Comprehensive Evaluation of the Child With Intellectual Disability or Global Developmental Delays. Pediatrics. 2014;134(3):e903–18.
OMIM. Online Mendelian Inheritance in Man. Baltimore: Escuela de Medicina de la Universidad Johns Hopkins; 2020. (Citado el 30 de marzo de 2020) Disponible en: http://www.omim.org/
Library London Medical Database (LMD). The Genetics Resource. Londres: Face2Gene; 2015. (Citado el 11 de octubre del 2017) Disponible en: http://suite.face2gene.com/lmd-library-london- medical-database-dysmorphology/
Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The Human Phenotype Ontology: A Tool for Annotating and Analyzing Human Hereditary Disease. Am J Hum Genet. 2008;83(5):610–5.
Oti M, Huynen MA, Brunner HG. The biological coherence of human phenome databases. Am J Hum Genet. 2009;85(6):801–8.
Dragusin R, Petcu P, Lioma C, Larsen B, Jørgensen HL, Cox IJ, et al. FindZebra: a search engine for rare diseases. Int J Med Inf. 2013;82(6):528–38.
Wadhwa RR, Park DY, Natowicz MR. The accuracy of computer-based diagnostic tools for the identification of concurrent genetic disorders. Am J Med Genet A. 2018;176(12):2704–9.
Mishima H, Suzuki H, Doi M, Miyazaki M, Watanabe S, Matsumoto T, et al. Evaluation of Face2Gene using facial images of patients with congenital dysmorphic syndromes recruited in Japan. J Hum Genet. 2019;64(8):789–94.
Köhler S, Øien NC, Buske OJ, Groza T, Jacobsen JOB, McNamara C, et al. Encoding clinical data with the human phenotype ontology for computational differential diagnostics. Curr Protoc Hum Genet. 2019;103(1): e92.
Myers L, Anderlid B-M, Nordgren A, Lundin K, Kuja-Halkola R, Tammimies K, et al. Clinical versus automated assessments of morphological variants in twins with and without neurodevelopmental disorders. Am J Med Genet A. 2020;186(5): 1177-1189.
Strømme P, Mangelsdorf ME, Scheffer IE, Gécz J. Infantile spasms, dystonia, and other X-linked phenotypes caused by mutations in Aristaless related homeobox gene, ARX. Brain Dev. 2002;24(5):266–8.
Villard L. MECP2 mutations in males. J Med Genet. 2007;44(7):417–23.
Thurm A, Himelstein D, D’Souza P, Rennert O, Jiang S, Olatunji D, et al. Creatine Transporter Deficiency: Screening of Males with Neurodevelopmental Disorders and Neurocognitive Characterization of a Case. J Dev Behav Pediatr JDBP. 2016;37(4):322– 6.
Calleja-Pérez B, Fernández-Perrone AL, Fernández-Mayoralas DM, Jiménez de Domingo A, Tirado P, López-Arribas S, et al. Genetic studies and neurodevelopment. From effectiveness to genetic models. Medicina (Mex). 2020;80 (Suppl 2):26–30.
Shaffer LG, Bejjani BA. A cytogeneticist’s perspective on genomic microarrays. Hum Reprod Update. 2004;10(3):221–6.
Monroe GR, Frederix GW, Savelberg SMC, de Vries TI, Duran KJ, van der Smagt JJ, et al. Effectiveness of whole-exome sequencing and costs of the traditional diagnostic trajectory in children with intellectual disability. Genet Med Off J Am Coll Med Genet. 2016;18(9):949–56.
Srivastava S, Love-Nichols JA, Dies KA, Ledbetter DH, Martin CL, Chung WK, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med Off J Am Coll Med Genet. 2019;21(11):2413–21.
Stark Z, Tan TY, Chong B, Brett GR, Yap P, Walsh M, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med Off J Am Coll Med Genet. 2016;18(11):1090–6.
Marzancola MG, Sedighi A, Li P. DNA Microarray-Based Diagnostics. Methods Mol Biol Clifton NJ. 2016;1368:161–178.
Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies. Am J Hum Genet. 2010;86(5):749–764.
Battaglia A, Doccini V, Bernardini L, Novelli A, Loddo S, Capalbo A, et al. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2013;17(6):589–99.
Pratte-Santos R, Ribeiro KH, Santos TA, Cintra TS. Analysis of chromosomal abnormalities by CGH-array in patients with dysmorphic and intellectual disability with normal karyotype. Einstein. 2016;14(1):30–4.
Abarca-Barriga HH, Chávez Pastor MA, Trubnykova M, Vásquez F, Poterico JA. Chromosomal microarray analysis in peruvian children with delayed psychomotor development or intellectual disability. Rev Peru Med Exp Salud Publica. 2017;34(3):572–4.
Han JY, Jang W, Park J, Kim M, Kim Y, Lee IG. Diagnostic approach with genetic tests for global developmental delay and/or intellectual disability: Single tertiary center experience. Ann Hum Genet. 2019;83(3):115–23.
Sotomayor FV, Abarca-Barriga HH. Homozygous Deletion of the CFTR Gene Caused by Interstitial Maternal Isodisomy in a Peruvian Child with Cystic Fibrosis. J Pediatr Genet. 2019;8(3):147-152. DOI:10.1055/s-0039-1678682
Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S. Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr. 2017;43(1):39.
van Karnebeek CDM, Jansweijer MCE, Leenders AGE, Offringa M, Hennekam RCM. Diagnostic investigations in individuals with mental retardation: a systematic literature review of their usefulness. Eur J Hum Genet EJHG. 2005;13(1):6–25.
Bonilla R, Salazar D, Tanpaiboon P. Laboratory diagnostic approaches in metabolic disorders. Ann Transl Med. 2018; 6(24): 470. doi: 10.21037/ atm.2018.11.05
van Karnebeek CDM, Stockler S. Treatable inborn errors of metabolism causing intellectual disability: a systematic literature review. Mol Genet Metab. 2012;105(3):368–81.
van Karnebeek CDM, Houben RFA, Lafek M, Giannasi W, Stockler S. The treatable intellectual disability APP www.treatable-id.org: a digital tool to enhance diagnosis & care for rare diseases. Orphanet J Rare Dis. 2012;7:47.
WHO | Cost-effectiveness analysis for health interventions. Washington DC: WHO. (Citado el 7 de agosto de 2020) Disponible en: http://www. who.int/heli/economics/costeffanalysis/en/
Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, et al. Diagnostic impact and cost- effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr. 2017;171(9):855–62.
Sagoo GS, Mohammed S, Barton G, Norbury G, Ahn JW, Ogilvie CM, et al. Cost Effectiveness of using Array-CGH for D=diagnosing learning disability. Appl Health Econ Health Policy. 2015;13(4):421–32.
Vrijenhoek T, Middelburg EM, Monroe GR, van Gassen KLI, Geenen JW, Hövels AM, et al. Whole-exome sequencing in intellectual disability; cost before and after a diagnosis. Eur J Hum Genet EJHG. 2018;26(11):1566–71.
Córdoba M, Rodriguez-Quiroga SA, Vega PA, Salinas V, Perez-Maturo J, Amartino H, et al. Whole exome sequencing in neurogenetic odysseys: An effective, cost- and time-saving diagnostic approach. PloS One. 2018;13(2):e0191228.
Hu X, Li N, Xu Y, Li G, Yu T, Yao R-E, et al. Proband-only medical exome sequencing as a cost- effective first-tier genetic diagnostic test for patients without prior molecular tests and clinical diagnosis in a developing country: the China experience. Genet Med Off J Am Coll Med Genet. 2018;20(9):1045–53.
Reichenberg A, Cederlöf M, McMillan A, Trzaskowski M, Kapra O, Fruchter E, et al.
Discontinuity in the genetic and environmental causes of the intellectual disability spectrum. Proc Natl Acad Sci U S A. 2016;113(4):1098–103.
Hettige NC, Manzano-Vargas K, Jefri M, Ernst C. Strategies to Advance Drug Discovery in Rare Monogenic Intellectual Disability Syndromes. Int J Neuropsychopharmacol. 2018;21(3):201–6.