Potenciales mecanismos de neuroinvasión del SARS-CoV-2: una revisión de la literatura actual.

Autores/as

  • Rafael Alarco Facultad de Medicina Humana, Universidad de Piura
  • Jeff Huarcaya-Victoria Centro de Investigación en Salud Pública, Facultad de Medicina, Universidad de San Martín de Porres. / Departamento de Psiquiatría, Hospital Nacional Guillermo Almenara Irigoyen, EsSalud

DOI:

https://doi.org/10.20453/rnp.v84i1.3935

Palabras clave:

SARS-CoV-2, coronavirus, COVID-19, neuropsiquiatría, fisiopatología, sistema nervioso

Resumen

Desde su inicio, en diciembre del 2019, la pandemia causada por el nuevo coronavirus 2019 (COVID-19), ha infectado a más de 116 millones de personas. A las bien documentadas manifestaciones respiratorias causadas por el SARS-CoV-2, se está añadiendo un creciente número de manifestaciones neurológicas y psiquiátricas entre los pacientes afectados y sobrevivientes. En este artículo se revisan y describen los potenciales mecanismos de invasión del virus al sistema nervioso. Sobre la base de estudios precedentes en coronavirus similares (MERS-CoV y SARS-CoV) y la evidencia actual, se plantea que las posibles rutas de neuroinvasión que emplea el SARS-CoV-2 son la transneuronal (vía axonal retrógrada, a través de los nervios periféricos), la hematógena/linfática (libre a través de la sangre y linfa o en el interior de las células inmunes) y la digestiva (mediante disrupción de la barrera intestinal). Si bien es necesario conducir más investigaciones en varias áreas, dilucidar las rutas de neuroinvasión, así como las capacidades neurotrópicas del virus, son puntos de vital importancia para entender y tratar las múltiples manifestaciones neurológicas y psiquiátricas, así como las potenciales secuelas a largo plazo que los pacientes infectados puedan desarrollar.

Citas

World Health Organization. WHO Coronavirus Disease (COVID-19). Ginebra: World Health Organization; 2020. (Citado el 9 de marzo del 2021) Disponible en: https://covid19.who.int/?gclid=CjwK CAiAqJn9BRB0EiwAJ1Sztem0DuIa_N2Ks2Ypc EOGgyyvJIIuRLQTimQ0xkrfjR-OY0sfiF 9l1BoC1sQQAvD_BwE

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.

Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC, et al. Cerebral Micro-Structural Changes in COVID-19 Patients - An MRI-based 3-month Follow-up Study. EClinicalMedicine. 2020;25:100484.

Zubair AS, McAlpine LS, Gardin T, Farhadian S, Kuruvilla DE, Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020;77(8):1018-27.

Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle East Respiratory Syndrome Coronavirus Causes Multiple Organ Damage and Lethal Disease in Mice Transgenic for Human Dipeptidyl Peptidase 4. J Infect Dis. 2016; 213(5): 712-22.

Kim JE, Heo JH, Kim HO, Song SH, Park SS, Park TH, et al. Neurological Complications during Treatment of Middle East Respiratory Syndrome. J Clin Neurol. 2017;13(3):227-33.

McCray PB, Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813-21.

Cheng Q, Yang Y, Gao J. Infectivity of human coronavirus in the brain. EBioMedicine. 2020;56:102799.

Tso EY, Tsang OT, Choi KW, Wong TY, So MK, Leung WS, et al. Persistence of physical symptoms in and abnormal laboratory findings for survivors of severe acute respiratory syndrome. Clin Infect Dis. 2004;38(9):1338.

Wu KK, Chan SK, Ma TM. Posttraumatic stress, anxiety, and depression in survivors of severe acute respiratory syndrome (SARS). J Trauma Stress. 2005; 18(1): 39-42.

Li Z, Liu T, Yang N, Han D, Mi X, Li Y, et al. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain. Front Med. 2020;14(5):533-41.

Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782-93.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80.

Mahase E. Covid-19: Russia approves vaccine without large scale testing or published results. BMJ. 2020;370:m3205. doi: 10.1136/bmj.m3205

Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020;382(17):1653-9.

Bestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786. doi: 10.26508/lsa.202000786

Chen R, Wang K, Yu J, Chen Z, Wen C, Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. Front Neurol. 2021; 11: 573095. doi: 10.3389/ fneur.2020.573095

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-90.

Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251-61.

Rogers JP, Chesney E, Oliver D, Pollak TA, McGuire P, Fusar-Poli P, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611-27.

Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020;87:34-9.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 2009; 6(7): e1000100.

Singal CMS, Jaiswal P, Seth P. SARS-CoV-2, More than a Respiratory Virus: Its Potential Role in Neuropathogenesis. ACS Chem Neurosci. 2020;11(13):1887-99.

Saleki K, Banazadeh M, Saghazadeh A, Rezaei N. The involvement of the central nervous system in patients with COVID-19. Rev Neurosci. 2020;31(4):453-6.

Garg RK, Paliwal VK, Gupta A. Encephalopathy in patients with COVID-19: A review. J Med Virol. 2021;93(1):206-222. doi: 10.1002/jmv.26207.

Ashraf O, Young M, Malik KJ, Cheema T. Systemic Complications of COVID-19. Crit Care Nurs Q. 2020;43(4):390-9.

Berth SH, Leopold PL, Morfini GN. Virus-induced neuronal dysfunction and degeneration. Front Biosci (Landmark Ed). 2009;14:5239-59.

Baig AM, Sanders EC. Potential neuroinvasive pathways of SARS-CoV-2: Deciphering the spectrum of neurological deficit seen in coronavirus disease-2019 (COVID-19). J Med Virol. 2020; 92(10):1845-1857. doi: 10.1002/jmv.26105

Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699-702.

Bender JE, León R, Mendieta MD, Rodríguez R, Velázquez LC. Infección por el SARS-CoV-2: de los mecanismos neuroinvasivos a las manifestaciones neurológicas. Anales de la Academia de Ciencias de Cuba. 2020. 10(2)0-0. (Citado el 9 de marzo del 2021) Disponible en: http://www.revistaccuba.cu/ index.php/revacc/article/view/855/862

Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and Ageusia: Common Findings in COVID-19 Patients. Laryngoscope. 2020;130(7):1787. doi: 10.1002/lary.28692

Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem Neurosci. 2020; 11(11): 1555- 62.

Pennisi M, Lanza G, Falzone L, Fisicaro F, Ferri R, Bella R. SARS-CoV-2 and the Nervous System: From Clinical Features to Molecular Mechanisms. Int J Mol Sci. 2020; 21(15):0-0.

Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92(6): 552-5.

Turtle L. Respiratory failure alone does not suggest central nervous system invasion by SARS-CoV-2. J Med Virol. 2020;92(7):705-6.

de Freitas Ferreira ACA, Romão TT, Y SIM, Pupe C, Nascimento OJ. COVID-19 and herpes zoster co-infection presenting with trigeminal neuropathy. Eur J Neurol. 2020;27(9):1748-1750. doi: 10.1111/ ene.14361

Spiegel M, Schneider K, Weber F, Weidmann M, Hufert FT. Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J Gen Virol. 2006;87(Pt 7):1953-60.

Azkur AK, Akdis M, Azkur D, Sokolowska M, van de Veen W, Brüggen MC, et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy. 2020;75(7):1564-81.

Zhao JM, Zhou GD, Sun YL, Wang SS, Yang JF, Meng EH, et al. Clinical pathology and pathogenesis of severe acute respiratory syndrome. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi. 2003;17(3):217-21.

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995-8.

Dropulić B, Masters CL. Entry of neurotropic arboviruses into the central nervous system: an in vitro study using mouse brain endothelium. J Infect Dis. 1990;161(4):685-91.

Kim WK, Corey S, Alvarez X, Williams K. Monocyte/ macrophage traffic in HIV and SIV encephalitis. J Leukoc Biol. 2003;74(5):650-6.

Serrano-Castro PJ, Estivill-Torrús G, Cabezudo-García P, Reyes-Bueno JA, Ciano Petersen N, Aguilar-Castillo MJ, et al. Impact of SARS-CoV-2 infection on neurodegenerative and neuropsychiatric diseases: a delayed pandemic? Neurologia 2020;35(4):245-51.

Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843-51.

Jin X, Lian JS, Hu JH, Gao J, Zheng L, Zhang YM, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut. 2020;69(6):1002-9.

Llaro-Sánchez MK, Gamarra-Villegas BE, Campos-Correa KE. Características clínico-epidemiológicas y análisis de sobrevida en fallecidos por COVID-19 atendidos en establecimientos de la Red Sabogal-Callao 2020. Horiz Med. 2020;20(2): e1229. DOI: 10.24265/horizmed

Cortés ME. Digestive symptoms in coronavirus disease 2019 (COVID-19). Rev Gastroenterol Peru. 2020;40(1):100-101.

Mönkemüller K, Fry L, Rickes S. COVID-19, coronavirus, SARS-CoV-2 and the small bowel. Rev Esp Enferm Dig. 2020;112(5):383-8.

Bostancıklıoğlu M. Temporal Correlation Between Neurological and Gastrointestinal Symptoms of SARS-CoV-2. Inflamm Bowel Dis. 2020;26(8): e89-e91.

Descargas

Publicado

2021-04-08

Cómo citar

1.
Alarco R, Huarcaya-Victoria J. Potenciales mecanismos de neuroinvasión del SARS-CoV-2: una revisión de la literatura actual. Rev Neuropsiquiatr [Internet]. 8 de abril de 2021 [citado 23 de abril de 2024];84(1):25-32. Disponible en: https://revistas.upch.edu.pe/index.php/RNP/article/view/3935

Número

Sección

ARTÍCULO DE REVISION

Artículos más leídos del mismo autor/a