Activation of the NLRP3 inflammasome complex in the brains of rats exposed to high-altitude hypoxia (3153 m a.s.l.)

Authors

  • Roger Calderon Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Laboratorio de Fisiología Animal, Grupo de Investigación GIFATA. Lima, Perú.
  • Roberto Dávila Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Clínica Veterinaria. Lima, Perú.
  • Mariella Ramos-Gonzalez Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Laboratorio de Zootecnia y Producción Animal. Lima, Perú.
  • Boris Lira Mejia Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Laboratorio de Fisiología Animal, Grupo de Investigación GIFATA. Lima, Perú.

DOI:

https://doi.org/10.20453/stv.v13i2.7447

Abstract

Exposure to high-altitude hypobaric hypoxia provides a useful pathophysiological model for studying the brain's response to reduced oxygen availability. In this study, gene expression was analyzed in different brain regions (hypothalamus, striatum, hippocampus, and cerebral cortex) of rats exposed to 3153 m a.s.l., focusing on markers of inflammation and cellular adaptation: NLRP3, IL-1β, and HIF-1α. For the samples obtained from each brain region, three consecutive procedures were performed following the manufacturer's instructions: total RNA extraction, reverse transcription to complementary DNA (cDNA), and quantification by real-time PCR (qPCR). Findings showed limited induction of NLRP3, whereas IL-1β and HIF-1α were markedly overexpressed. These results suggest that cerebral hypoxia triggers a sustained inflammatory response during the 28-day exposure period, accompanied by HIF-1α-mediated transcriptional adaptation, a key regulator of homeostasis under hypoxic conditions. The increase in IL-1β indicates a neuroinflammatory microenvironment capable of inducing neuronal damage, while HIF-1α acts as a modulator of proinflammatory and cell survival genes. Overall, the results demonstrate that high-altitude hypoxia not only impairs brain function but also activates inflammatory and adaptive pathways potentially involved in the initiation of neurodegenerative processes.

Downloads

Download data is not yet available.

Author Biographies

Roger Calderon, Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Laboratorio de Fisiología Animal, Grupo de Investigación GIFATA. Lima, Perú.

Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Laboratorio de Fisiología Animal, Grupo de Investigación GIFATA. Lima, Perú.

Roberto Dávila, Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Clínica Veterinaria. Lima, Perú.

Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Clínica Veterinaria. Lima, Perú.

Mariella Ramos-Gonzalez, Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Laboratorio de Zootecnia y Producción Animal. Lima, Perú.

        

Boris Lira Mejia, Universidad Nacional Mayor de San Marcos, Facultad de Medicina Veterinaria, Laboratorio de Fisiología Animal, Grupo de Investigación GIFATA. Lima, Perú.

     

References

Aboouf, M. A., Thiersch, M., Soliz, J., Gassmann, M. y Schneider, E. M. (2023). The brain at high altitude: from molecular signaling to cognitive performance. International Journal of Molecular Sciences, 24(12), 10179. https://doi.org/10.3390/ijms241210179

Allan, S. M., Tyrrell, P. J. y Rothwell, N. J. (2005). Interleukin-1 and neuronal injury. Nature Reviews Immunology, 5, 629-640. https://www.nature.com/articles/nri1664

Bailey, D. M., Bärtsch, P., Knauth, M. y Baumgartner, R. W. (2009). Emerging concepts in acute mountain sickness and high-altitude cerebral edema: From the molecular to the morphological. Cellular and Molecular Life Sciences, 66(22), 3583-3594. https://doi.org/10.1007/s00018-009-0145-9

Brough, D. y Denes, A. (2015). Interleukin-1α and brain inflammation. IUBMB Life, 67(5), 323-330. https://doi.org/10.1002/iub.1377

Carod-Artal, F. J. (2014). Cefalea de elevada altitud y mal de altura. Neurología, 29(9), 533-540. https://doi.org/10.1016/j.nrl.2012.04.015

Chávez, J. C., Agani, F., Pichiule, P. y LaManna, J. C. (2000). Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. Journal of Applied Physiology, 89(5), 1937-1942. https://doi.org/10.1152/jappl.2000.89.5.1937

Fann, D. Y., Lee, S. Y., Manzanero, S., Tang, S. C., Gelderblom, M., Chunduri, P., Bernreuther, C., et al. (2013). Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death & Disease, 4, e790. https://doi.org/10.1038/cddis.2013.326

Freeman, L., Guo, H., David, C. N., Brickey, W. J., Jha, S. y Ting, J. P. (2017). NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. Journal of Experimental Medicine, 214(5), 1351-1370. https://doi.org/10.1084/jem.20150237

Li, Y., Yu, P., Chang, S. Y., Wu, Q., Yu, P., Xie, C., et al. (2017). Hypobaric hypoxia regulates brain iron homeostasis in rats. Journal of Cellular Biochemistry, 118(6), 1596-1605. https://doi.org/10.1002/jcb.25822

Lira-Mejía, B., Calderon-Romero, R., Ordaya-Fierro, J., Medina, C., Rodríguez, J. L., Romero, A., et al. (2025). Impact of Exposure Duration to High-Altitude Hypoxia on Oxidative Homeostasis in Rat Brain Regions. International Journal of Molecular Sciences, 26(17), 8714. https://doi.org/10.3390/ijms26178714

Maiti, P., Singh, S. B., Sharma, A. K., Muthuraju, S., Banerjee, P. K. y Ilavazhagan, G. (2006). Hypobaric hypoxia induces oxidative stress in rat brain. Neurochemistry International, 49(8), 709-716. https://doi.org/10.1016/j.neuint.2006.06.002

Semenza, G. L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell, 148(3), 399-408. https://doi.org/10.1016/j.cell.2012.01.021

Toldo, S. y Abbate, A. (2018). The NLRP3 inflammasome in acute myocardial infarction. Nature Reviews Cardiology, 15, 203-214. https://doi.org/10.1038/nrcardio.2017.161

Vangeison, G., Carr, D., Federoff, H. J. y Rempe, D. A. (2008). The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. Journal of Neuroscience, 28(8), 1988-1993. https://doi.org/10.1523/JNEUROSCI.5323-07.2008

Voet, S., Srinivasan, S., Lamkanfi, M. y Van Loo, G. (2019). Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Molecular Medicine, 11, e10248. https://doi.org/10.15252/emmm.201810248

Wenger, R. H., Stiehl, D. P. y Camenisch, G. (2005). Integration of oxygen signaling at the consensus HRE. Science Signaling, 2005(306), re12. https://doi.org/10.1126/stke.3062005re12

Zhang, Y., Miao, Y., Xiong, X., Tan, J., Han, Z., Chen, F., Lei, P., y Zhang, Q. (2023). Microglial exosomes alleviate intermittent hypoxia-induced cognitive deficits by suppressing NLRP3 inflammasome. Biology Direct, 18(1), 29. https://doi.org/10.1186/s13062-023-00387-5

Published

2024-12-10

How to Cite

Calderon, R., Dávila, R., Ramos-Gonzalez, M., & Lira Mejia, B. (2024). Activation of the NLRP3 inflammasome complex in the brains of rats exposed to high-altitude hypoxia (3153 m a.s.l.). Salud Y Tecnología Veterinaria, 13(2), e7447 . https://doi.org/10.20453/stv.v13i2.7447