Presence of extended-spectrum beta-lactamase–producing Escherichia coli in fecal content of cattle from two slaughterhouses in Lima, Peru, 2023–2024
DOI:
https://doi.org/10.20453/stv.v13i2.6867Abstract
The indiscriminate use of antimicrobials has led enterobacteria such as Escherichia coli to develop a variety of resistance mechanisms such as the production of extended-spectrum beta-lactamases (ESBL). Beta-lactam antimicrobials including penicillins, monobactams, and cephalosporins are among the most widely used in both animals and humans; Therefore, the presence of ESBL-producing E. coli (ESBL-EC) has the ability to hydrolyze these antimicrobials, leading to resistance against this class of agents, which represents a potencial threat to human and animal health. This study aimed to determine the presence of ESBL-EC in fecal samples from cattle at two slaughterhouses in Lima, Peru. A total of 260 fecal samples from cattle were collected at two slaughterhouses: S1 (n=134) and S2 (n=126). Antibiotic discs of cefotaxime (CTX) 30 µg, aztreonam (ATM) 30 µg, ceftazidime (CAZ) 30 µg, cefpodoxime (CPD) 10 µg and ceftriaxone (CRO) were used as screening method. While, antimicrobials cefotaxime - clavulanic acid (CTX-CLA) (30/10 µg) and ceftazidime - clavulanic acid (CAZ-CLA) (30/10 µg) were used in combined disc method for ESBL-EC phenotypic confirmation. The interpretation results follow the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Finally, was determined that 23.5% (61/260) of fecal sample presented ESBL-EC. Our results demonstrate that cattle intended for human consumption are carriers of ESBL-EC representing a potential public health risk.
Keywords: ESBL-EC, antimicrobial resistance, cattle
Downloads
References
Allocati, N., Masulli, M., Alexeyev, M. y Di Ilio, C. (2013). Escherichia coli in Europe: an overview. International Journal of Environmental Research and Public Health, 10(12), 6235-6254. https://doi.org/10.3390/ijerph10126235
Alós, J. (2015). Resistencia bacteriana a los antibióticos: una crisis global. Enfermedades infecciosas y Microbiología Clínica, 33(10), 692-699. https://doi.org/10.1016/j.eimc.2014.10.004
Ambler R. P. (1980). The structure of beta-lactamases. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 289(1036), 321–331. https://doi.org/10.1098/rstb.1980.0049
Aworh, M., Ekeng, E., Nilsson, P., Egyir, B., Owusu-Nyantakyi, C. y Hendriksen, R. (2022). Extended-spectrum ß-lactamase-producing Escherichia coli among humans, beef cattle, and abattoir environments in Nigeria. Frontiers in Cellular and Infection Microbiology, 12, 869314. https://doi.org/10.3389/fcimb.2022.869314
Aworh, M., Lawal, O., Egyir, B. y Hendriksen, R. (2025). In silico genomic insights into bacteriophages infecting ESBL-producing Escherichia coli from human, animal, and environmental sources. BMC Microbiology, 25, 200. https://doi.org/10.1186/s12866-025-03913-9
Barlow, R., McMillan, K., Mellor, G., Duffy, L., Jordan, D., Abraham, R., O’dea, M., Sahibzada, S. y Abraham S. (2022). Phenotypic and genotypic assessment of antimicrobial resistance in Escherichia coli from australian cattle populations at slaughter. Journal of Food Protection, 85(4), 563-570. https://doi.org/10.4315/JFP-21-430
Bazalar-Gonzales, J., Silvestre-Espejo, T., Rodríguez, C., Carhuaricra, D., Ignacion, Y., Luna, L., Rosadio, R. y Maturrano, L. (2024). Genomic insights into ESBL-producing Escherichia coli isolated from no -human primates in the peruvian Amazon. Frontiers in Veterinary Science, 10, 1340428. https://doi.org/10.3389/fvets.2023.1340428
Benavides, J., Godreuil, S., Opazo-Capurro, A., Mahamat, O., Falcon, N., Oravcova, K. y Streicker, D. (2022). Long-term maintenance of multidrog-resistant Escherichia coli carried by vampire bats and shared with livestock in Peru. Science of the Total Environment, 810, 152045. https://doi.org/10.1016/j.scitotenv.2021.152045
Bradford, P. (2001). Extended-spectrum ß-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clinical Microbiology Reviews, 14(4), 933-951. https://doi.org/10.1128/CMR.14.4.933-951.2001
Briñas, L., Moreno, M., Teshager, T., Sáenz, Y., Porrero, M., Domínguez, L. y Torres, C. (2005). Monitoring and characterization of extended-spectrum β-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrobial Agents and Chemotherapy, 49(3), 1262-1264. https://doi.org/10.1128/AAC.49.3.1262-1264.2005
Bush, K. y Jacoby, G. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotheraphy, 54(3), 969-676. https://doi.org/10.1128/AAC.01009-09
Carhuallanqui, A., Villafana, L., Gonzalez-Veliz, R., Cobo-Díaz, J., Álvarez-Ordoñez, A. y Ramos-Delgado, D. (2025). Colistin-resistant Escherichia coli isolated from houseflies and feces of cattle and pigs at a slaughterhouse in Lima, Peru. Antibiotics, 14(8), 818. https://doi.org/10.3390/antibiotics14080818
Ceino, F., Koga, I. y Peña, N. (2019). Detección fenotípica y genotípica de Escherichia coli productoras de β-lactamasas espectro extendido aisladas de aves de abasto en Perú. Biotempo, 16(2), 181-186. https://doi.org/10.31381/biotempo.v16i2.2528
Chávez, K., Condolo, L., Vinueza, P. y Tiama, N. (2025). Patrones de resistencia a los antibióticos en bacterias aisladas de mastitis subclínicas. Revista de Investigaciones Veterinarias del Perú, 36(1), e30199. https://doi.org/10.15381/rivep.v36i1.30199
Clinical and Laboratory Standards Institute [CLSI] (2024). M100 Performance Standards for Antimicrobial Susceptibility Testing (34.a ed.).
Cortez, V. y Shiva, C. (2019). Detección de enterobacterias productoras de β-lactamasas de espectro extendido (BLEE) aisladas en carne molida de supermercados de un distrito de Lima, Perú. Salud y Tecnología Veterinaria, 7(1), 1-7. https://doi.org/10.20453/stv.v7i1.3561
Cortez-Sandoval, V., González, R. y Ramos, D. (2022). Detección de enterobacterias productoras de β-lactamasas de espectro extendido (BLEE) aisladas en carne de pollo de mercados de abasto de un distrito de Lima, Perú. Revista de Investigaciones Veterinarias del Perú. 33(3), e22899. https://doi.org/10.15381/rivep.v33i3.22899
Dahms, C., Hübner, N., Kossow, A., Mellmann, A., Dittmann, K. y Kramer, A. (2015). Occurrence of ESBL-producing Escherichia coli in livestock and farm workers in Mecklenburg-Western Pomerania, Germany. PloS ONE, 10(11), e0143326. https://doi.org/10.1371/journal.pone.0143326
Dever, L. y Dermody, T. (1991). Mechanisms of bacterial resistance to antibiotics. Archives of Internal Medicine, 151(5), 886-895. https://doi.org/10.1001/archinte.1991.00400050040010
Egbule, O. y Yusuf, I. (2019). Multiple antibiotic resistances in Escherichia coli isolated from cattle and poultry faeces in Abraka, South-South Nigeria. Pertanika Journal of Tropical Agricultural Science, 42(2), 585-594. http://pertanika2.upm.edu.my/resources/files/Pertanika%20PAPERS/JTAS%20Vol.%2042%20(2)%20May.%202019/13%20JTAS-1598-2018.pdf
Estrada-Calles, D. M., Rodríguez-Gamboa, M. F., y Velázquez-Álvarez, E. A. (2022). Resistencia a antibióticos betalactámicos: situación actual y nuevas estrategias. RD-ICUAP, 8(22), 13–27. https://doi.org/10.32399/icuap.rdic.2448-5829.2022.22.682
Ewers, C., Bethe, A., Semmler, T., Guenther, S. y Wieler, L. (2012). Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clinical Microbiology and Infection, 18(7), 646-655. https://doi.org/10.1111/j.1469-0691.2012.03850.x
Gajdács, M., Urbán, E., Stájer, A. y Baráth, Z. (2021). Antimicrobial resistance in the context of the sustainable development goals: a brief review. European Journal of Investigation in Health, Psychology and Education, 11(1), 71-82. https://doi.org/10.3390/ejihpe11010006
García-Alarcón, Z., Alderete-Gutiérrez, J., Ramírez-Trejo, C., Leal-Rodríguez, J., Olave-Leyva, J. y Martínez-Juárez, V. (2025). Resistencia a antimicrobianos en bovinos leche y bovinos carne y su posible impacto en la salud pública a nivel mundial. Boletín de Ciencias Agropecuarias del ICAP, 11(21), 21-29. https://doi.org/10.29057/icap.v11i21.13111
Geser, N., Stephan, R. y Hächler, H. (2012). Occurrence and characteristics of extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae in food producing animals, minced meat and raw milk. BMC Veterinary Research, 8(1), 21. https://doi.org/ 10.1186/1746-6148-8-21
Geser, N., Stephan, R., Kuhnert, P., Zbinden, R., Kaeppeli, U., Cernela, N. y Haechler, H. (2011). Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in swine and cattle at slaughter in Switzerland. Journal of Food Protection, 74(3), 446-449. https://doi.org/10.4315/0362-028X.JFP-10-372
Ghafourian, S., Sadeghifard, N., Soheili, S. y Sekawi, Z. (2015). Extended spectrum beta-lactamases: definition, classification and epidemiology. Current Issues in Molecular Biology, 17, 11-22. https://doi.org/10.21775/cimb.017.011
Huamán, M., Salvador-Luján, G., Morales, L., Alba, J., Velasquez, L., Pacheco, J. y Pons, M. (2024). Resistance to cephalosporins and quinolones in Escherichia coli isolated from irrigation water from the Rímac river in east Lima, Peru. Revista Peruana de Medicina Experimental y Salud Pública, 41(2), 114-120. https://doi.org/10.17843/rpmesp.2024.412.13246
Huamán-Chacón, L. y Gonzales-Escalante, E. (2019). Escherichia coli productor de betalactamasas de espectro extendido en pollos para consumo humano. Revista Peruana de Medicina Experimental y Salud Pública, 36(2), 361-362. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342019000200029
Khalifeh, O. M. y Obaidat, M. (2022). Urinary tract virulence genes in extended-spectrum beta-lactamase E. coli from dairy cows, beef cattle, and small ruminants. Acta Tropica, 234, 106611. https://doi.org/10.1016/j.actatropica.2022.106611
Larson, A., Hartinger, S., Riveros, M., Salmon-Mulanovich, G., Hattendorf, J., Verastegui, H. y Mäusezahl, D. (2019). Antibiotic-Resistant Escherichia coli in drinking water samples from rural andean households in Cajamarca, Peru. The American Journal if Tropical Medicine and Hygiene, 100(6), 1363-1368. https://doi.org/10.4269/ajtmh.18-0776
Lezameta, L., Gonzales-Escalante, E., Tamariz, J. (2010). Comparación de cuatro métodos fenotípicos para la detección de beta-lactamasas de espectro extendido. Revista Peruana de Medicina Experimental y Salud Pública, 27(3), 345-351. http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-46342010000300006
Ma, F., Xu, S., Tang, Z., Li, Z. y Zhang, L. (2021). Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health, 3(1), 32-38. https://doi.org/10.1016/j.bsheal.2020.09.004
Newell, D., Koopmans, M., Verhoef, L., Duizer, E., Aidara-Kane, A., Sprong, H., Opsteegh, M., Langelaar, M., Threfall, J., Scheutz, F., Van der Giessen, J. y Kruse H. (2010). Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge. International Journal of Food Microbiology, 139(supl. 1), S3-S15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021
Pires, A., Pereira, G., Fangueiro, D., Bexiga, R. y Oliveira, M. (2024). When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiology, 19(10), 903-929. https://doi.org/10.2217/fmb-2023-0232
Quiñones, D. (2017). Resistencia antimicrobiana: evolución y perspectivas actuales ante el enfoque «Una salud». Revista Cubana de Medicina Tropical, 69(3), 1-17. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602017000300009
Ramos, S., Silva, V., Dapkevicius, M., Caniça, M., Tejedor-Junco, M., Igrejas, G. y Poeta, P. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: health implications of extended spectrum β-lactamase (ESBL) production. Animals, 10(12), 2239. https://doi.org/10.3390/ani10122239
Redding, L., Cubas-Delgado, F., Sammel, M., Smith, G., Galligan, D., Levy, M. y Hennessy, S. (2014). The use of antibiotics on small dairy farms in rural Peru. Preventive Veterinary Medicine, 113(1), 88-95. https://doi.org/10.1016/j.prevetmed.2013.10.012
Reist, M., Geser, N., Hächler, H., Schärrer, S. y Stephan, R. (2013). ESBL-producing Enterobacteriaceae: occurrence, risk factors for fecal carriage and strain traits in the Swiss slaughter cattle population younger than 2 years sampled at abattoir level. PloS One, 8(8), e71725. https://doi.org/10.1371/journal.pone.0071725
Resolución Directoral n.º 0072-2013-MINAGRI-SENASA-DIAIA, que prohíben importación y comercialización de diversos principios activos, así como el uso de los mismos en la fabricación de productos veterinarios o alimentos para animales destinados al consumo humano y establecen otras disposiciones. Diario Oficial El Peruano (23 de septiembre de 2013). https://www.midagri.gob.pe/portal/download/pdf/marcolegal/normaslegales/resolucionesdirectorales/2013/setiembre/rd72-2013-minagri-senasa-diaia.pdf
Resolución Directoral N.° 0091-2019-MINAGRI-SENASA-DIAIA, que disponen prohibir la importación, comercialización, fabricación o elaboración de productos veterinarios que contengan el principio activo colistina (Polimixina E) o cualquiera de sus sales y dictan diversas disposiciones. Diario Oficial El Peruano (2 de diciembre de 2019). https://cdn.www.gob.pe/uploads/document/file/5478518/4886940-rd-0091-2019-minagri-senasa-diaia.pdf?v=1700857823
Ruiz-Roldán, L., Martínez-Puchol, S., Gomes, C., Palma, N., Riveros, M., Ocampo, K., Durand, D., Ochoa, T., Ruiz, J. y Pons, M. (2018). Presencia de Enterobacteriaceae y Escherichia coli multirresistente a antimicrobianos en carne adquirida en mercados tradicionales en Lima. Revista Peruana de Medicina Experimental y Salud Pública, 35(3), 425-432. http://dx.doi.org/10.17843/rpmesp.2018.353.3737
Sanou, S., Ouedraogo, A. S., Lounnas, M., Zougmore, A., Pooda, A., Zoungrana, J. y Godreuil, S. (2022). Epidemiology and molecular characterization of Enterobacteriaceae producing extended-spectrum β-lactamase in intensive and extensive breeding animals in Burkina Faso. PAMJ-One Health, 8(4). https://www.one-health.panafrican-med-journal.com/content/article/8/4/full/
Seral, C., Pardos, M. y Castillo, F. (2010). Betalactamasas de espectro extendido en enterobacterias distintas de Escherichia coli y Klebsiella. Enfermedades Infecciosas y Microbiología Clínica, 28(supl. 1), 12-18. https://doi.org/10.1016/S0213-005X(10)70003-3
Sudarwanto, M., Lukman, D., Latif, H., Pisestyani, H., Sukmawinata, E., Akineden, Ö. y Usleber, E. (2016). CTX-M producing Escherichia coli isolated from cattle feces in Bogor slaughterhouse, Indonesia. Asian Pacific Journal of Tropical Biomedicine, 6(7), 605-608. https://doi.org/10.1016/j.apjtb.2016.05.001
Tadesse, D., Li, C., Mukherjee, S., Hsu, C., Bodeis, S., Gaines, S., Kabera, C., Loneragan, G., Torrence, M., Harhay, D. McDermott, P. y Zhao, S.(2018). Whole-Genome sequence analysis of CTX-M containing Escherichia coli isolates from retail meats and cattle in the United States. Microbial Drug Resistance, 24(7), 939-948. https://doi.org/10.1089/mdr.2018.0206
United States Department of Agriculture [USDA]; Food Safety and Inspection Service (2023). MLG 31.01: Isolating bacteria from food animals for antimicrobial resistance surveillance. En Microbiology Laboratory Guidebook (pp. 1-17). https://www.fsis.usda.gov/sites/default/files/media_file/documents/MLG_31.01.pdf
Van Boeckel, T., Glennon, E., Chen, D., Gilbert, M., Robinson, T., Grenfell, B., Levin, S., Bonhoeffer, S. y Laxminarayan, R. (2017). Reducing antimicrobial use in food animals. Science, 357(6358), 1350-1352. https://doi.org/10.1126/science.aao1495
Wang, W., Wei, X., Wu, L., Shang, X., Cheng, F., Li, B., Zhou, X. y Zhang, J. (2021). The occurrence of antibiotic resistance genes in the microbiota of yak, beef and dairy cattle characterized by a metagenomic approach. The Journal of Antibiotics, 74(8), 508-518. https://doi.org/10.1038/s41429-021-00425-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Lorena Villafana, Ramos-Delgado Daphne D., Andrea Carhuallanqui , Karla Arévalo -Rodríguez, Jose Alfredo Guevara Franco

This work is licensed under a Creative Commons Attribution 4.0 International License.
All articles published in Salud y Tecnología Veterinaria are under a Creative Commons Reconocimiento 4.0 International license.
The authors retain the copyright and grant the journal the right of first publication, with the work registered with the Creative Commons License, which allows third parties to use what is published whenever they mention the authorship of the work, and to the first publication in this magazine.
Authors can make other independent and additional contractual agreements for the non-exclusive distribution of the version published in this journal, provided they clearly indicate that the work was published in this journal.
The authors can file in the repository of their institution:
The research work or thesis of degree from which the published article derives.
The pre-print version: the version prior to peer review.
The Post-print version: final version after peer review.
The definitive version or final version created by the publisher for publication.








